

Improvements in the Non-Preemptive
Speed Scaling Setting

Master’s Thesis in Computer Science – Algorithms, Languages and
Logic

PEDRO MATIAS

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet. The Author warrants that he/she is the

author to the Work, and warrants that the Work does not contain text, pictures or other

material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about this agreement. If the

Author has signed a copyright agreement with a third party regarding the Work, the

Author warrants hereby that he/she has obtained any necessary permission from this

third party to let Chalmers University of Technology and University of Gothenburg store

the Work electronically and make it accessible on the Internet.

Improvements in the Non-Preemptive Speed Scaling Setting

PEDRO MATIAS

c© PEDRO MATIAS, October 2015.

Examiner: DEVDATT DUBHASHI

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden October 2015

Abstract

The speed scaling problem was first introduced by Yao, Demers and Shenker [35]. It

consists on finding a schedule of jobs that minimises the amount of energy that is necessary

to execute them on a single variable-speed processor. Energy consumption is directly given

by a convex function of the processor’s speed and each job must be fully executed within

its lifetime, which is specified by its work volume, release time and deadline. In the original

version of the problem, which is in P, the processor is preemptive. This setting has already

been analysed to a great extent, including for multiple processors. Unfortunately, the non-

preemptive version of the problem is strongly NP-hard and not so much is known in this

variant. Hence, the present work doesn’t consider preemption.

The contributions of this thesis can be grouped into two parts. The main results of

the first part (chapter 3) include (using a single processor): (i) a substantial improvement

in the time complexity when all jobs have the same work volume and (ii) a proof that,

when the number of jobs with unrestricted work volume is limited to a constant, the

problem is still in P. The second part (chapter 4) presents and proves the correctness of

an algorithm that solves a special instance of a different problem: scheduling with job

assignment restrictions (first introduced by Muratore, Schwarz and Woeginger [29]). The

goal is to find a schedule of jobs that minimises the maximum job completion time, over

a set of single-speed processors. Solving this problem might give some insight on how to

solve the non-preemptive speed scaling problem.

Keywords. Energy-efficiency, scheduling, parallel machines, optimization, speed scaling,

algorithm correctness.

i

ii

Contents

1 Introduction 1

1.1 Notation and preliminaries . 2

1.2 Goal and overview . 3

1.3 Basic notions and further notes . 4

1.4 Special instances . 5

1.4.1 Agreeable deadlines . 5

1.4.2 Laminar instance . 6

1.4.2.1 Purely laminar instance . 7

2 Previous work 9

2.1 Single processor . 9

2.2 Multi-processor . 10

3 Analysis and improvements 13

3.1 Jobs of equal work volume . 13

3.1.1 The dynamic program . 15

3.1.2 Improving the time complexity . 17

3.1.2.1 The improved DP . 18

3.2 A constant number of jobs have unrestricted volumes 19

3.2.1 Extended grid intervals set I ′ . 20

3.2.2 The solution . 21

3.3 Other improvements and unsuccessful directions 23

3.3.1 Single processor . 23

3.3.2 Multi-processor . 28

4 A different scheduling problem 31

4.1 The problem . 32

4.1.1 Further notation . 33

4.2 The solution . 35

4.2.1 Correctness of algorithm A . 41

4.2.1.1 Correctness of A’s step 2.(c) 41

4.2.1.2 Correctness of A’s step 2.(d) 42

4.2.2 Complexity . 48

iii

4.2.3 Proof of theorem 5 . 49

4.3 Generalizing to nested machine sets . 57

4.3.1 Preliminaries . 57

4.3.2 The solution . 58

4.3.3 Correctness of algorithm A′ . 61

4.3.3.1 Correctness of A′’s step 3.(c) 62

4.3.3.2 Correctness of A′’s step 3.(d) 63

4.3.4 Proof of theorem 5′ . 65

5 Conclusion 67

Bibliography 71

iv

List of Algorithms

1 Algorithm Extended DP . 22

2 Algorithm A . 36

3 Procedure Compute T . 37

4 Procedure Compute T ∗ . 37

5 Procedure Update T . 38

6 Function Re-schedule . 38

7 Algorithm A′ . 59

8 Procedure Compute’ T . 60

9 Procedure Compute’ T ∗ . 60

10 Procedure Update’ T . 61

11 Function Re-schedule’ . 61

v

vi

List of Theorems

1 Observation . 14

1 Definition (Pexact) . 14

2 Observation . 14

2 Definition (Phase) . 14

3 Definition (Dynamic program according to [22]) 16

4 Definition (Grid intervals set I) . 17

1 Lemma . 17

1 Theorem . 19

2 Lemma . 20

2 Theorem . 22

1 Corollary . 22

3 Observation . 24

4 Observation . 26

5 Definition (Ranking of jobs) . 34

6 Definition (Ranking of machines) . 34

1 Claim . 41

3 Theorem . 41

3 Lemma . 41

4 Lemma . 41

4 Theorem . 42

5 Theorem . 42

7 Definition (Re-schedule sequence) . 44

5 Lemma . 44

6 Lemma . 45

7 Lemma . 45

6 Theorem . 46

5 Theorem . 49

8 Definition (Re-schedule graph) . 49

9 Definition (Machine increment) . 50

10 Definition (Types of paths) . 50

11 Definition (Simplified graph) . 51

2 Claim . 51

vii

8 Lemma . 52

9 Lemma . 53

5 Theorem . 54

12 Definition (Poset) . 58

13 Definition (Maximal and minimal elements) 58

1′ Claim . 62

3′ Theorem . 62

3 Lemma . 62

4 Lemma . 62

5′ Theorem . 63

7 Definition (Re-schedule sequence) . 63

5 Lemma . 63

6 Lemma . 63

7′ Lemma . 64

6′ Theorem . 64

5′ Theorem . 65

11′ Definition (Simplified graph) . 65

8′ Lemma . 66

viii

List of Figures

1.1 Evolution of the consumption of different sources of energy over the years. . 2

1.2 Illustration of an instance with agreeable deadlines. 6

1.3 Illustration of a laminar instance. 7

3.1 Partition of the time axis in the dynamic program. 15

3.2 Example of an unnecessary attempt of scheduling some job. 18

3.3 Representation of each sub-problem of the improved DP. 19

3.4 One of the consequences of obs. 3 is that we can schedule jobs by increasing

indexes to the extremes of the current available time window. 25

3.5 Illustration of jobs lifetimes in purely laminar instances. 27

3.6 Illustration of the idea of exploiting big differences in jobs lifetimes. 28

4.1 Illustration of the routine Re-schedule for job k. 39

4.2 Counter-example for the optimality of the strategy of scheduling all jobs of

size 2 before the jobs of size 1. 40

4.3 Counter-example for the optimality of the strategy of scheduling all jobs by

increasing order of their ranks (no matter their sizes) – right schedule. On

the left we can see the optimal solution. We assume that M(1) =M(2) =

M(3) = {M1,M2} and that jobs are considered in the order given by their

identification number. Red jobs have size 2 and black jobs have size 1. . . . 40

4.4 Partition of the set of machines M(k) (into M1, M2 and M3) according to

their makespan. 44

4.5 Illustration of a re-schedule sequence. 44

4.6 Illustration for case 2 of proof of theorem 6. 48

4.7 Illustration of the three different types of paths in a re-schedule graph. . . . 51

4.8 Example of a transformation of an unrestricted graph into a simplified one. 53

4.9 Example of the construction of a re-schedule graph with only one red arc. . 56

4.10 Example of the construction of a re-schedule graph with only one red arc. . 56

ix

x

List of Tables

4.1 Summary of the notation introduced in section 4.1. 35

4.2 Partition of the machines set M(k) . 43

xi

xii

Chapter 1

Introduction

Nowadays, the human being consumes, constantly, a huge amount of energy, throughout

the world. According to the International Energy Agency, the total energy used by all

humanity in 2012 was, approximately, 13371Mtoe(1) [1]. This is equivalent to spending,

in average, 4.9 × 106J of energy, every second, 24 hours a day, during one whole year!

Adding to this, is the fact that the world energy consumption continues to increase year

after year (see fig. 1.1). Perhaps, this boost is, partially, explained by the constant need

of humankind to develop new and better technologies that are able to improve its life

quality, by promoting a better understanding of the human race, of its needs and of the

environment it lives in. However, it is crucial that such development be carried in a

sustainable way, so that Earth’s ecosystem remains stable and, hence, able to sustain life.

Our lives quality depend, intrinsically, on the life quality of the planet we live in.

The present work is concerned with minimising the energy consumption of processors.

As it is well known, these devices play a key role in today’s urge for technology innovation

and development. Moreover, they offer a wide variety of countless applications, ranging

from tiny microchips to very large data centers. According to the famous Moore’s Law,

computing power doubles every 2 years, approximately. Although not necessarily true, it

is reasonable to think that one of the implications of this law is that energy consumption

increases as well: even if more power doesn’t directly imply a boost in energy consumption,

it definitely decreases the time needed to accomplish the same tasks and, therefore, creates

more room for processing other energy dependent tasks. Furthermore, an increase in

power consumption implies an increase in the costs of electricity and heat dissipation. It

is important to keep systems running at an appropriate temperature, to allow hardware

components to keep on running with the same performance and reliability.

More specifically, this thesis is concerned with finding ecological solutions to the prob-

lem of scheduling jobs in processors of variable-speed. As the name suggests, variable-

speed processors can work at different speeds and, naturally, they consume less energy

(1)Mtoe corresponds to the amount of energy produced by burning one million tonnes of crude oil [1]

1

1.1. Notation and preliminaries Chapter 1.

when working at lower speed. An ecological and feasible solution is one that ensures that

all jobs are fully executed, while keeping the amount of energy used to minimum. A more

detailed explanation is given in the next section.

1970 1980 1990 2000 2010

0

1000

2000

3000

4000

Year

E
n
er

g
y

(M
T

o
e)

World Energy Consumption

Oil

Coal

Natural Gas

Hydro

Nuclear

Other Renewable

Figure 1.1: Evolution of the consumption of different sources of energy over the years [31].

1.1 Notation and preliminaries

The Speed Scaling problem was first introduced by Yao, Demers and Shenker in [35]. The

term “speed scaling” derives from the fact that processors can vary its speed even during

the execution of a job. The problem formulation is the following. Given a set J of jobs,

each with a release time rj , a deadline dj and a work volume wj (for some job j ∈ J),

find a schedule of all jobs in J that minimises the amount of energy necessary to execute

them on a single variable-speed processor. The energy consumed during an interval of

time [a, b) is given by the following integral:∫ b

a
s(t)αdt,

In the above expression, s(t)α denotes the power consumption of the processor (for some

constant α > 1(1)), when it’s working at a speed of s(t). Thus, if the processor executes a

job j at a constant speed s it will take wj/s time units to complete it. It is useful to think

of the work volume of each job as the number of CPU cycles that are required to execute

it.

In the original version of the problem, preemption(2) is allowed and every job must be

(1)On most modern microprocessors, α is valued between two and three ([14, 34]).
(2)See section 1.3 for an explanation of this term.

2

Chapter 1. 1.2. Goal and overview

executed to completion within its lifetime. This implies processing all its work volume wj

within the time interval [rj , dj). If this isn’t the case for every job in J , the schedule is

not feasible. Note that there always exists a feasible schedule, since we consider that there

are no restrictions on the processor speed, i.e., it can be infinitely fast.

1.2 Goal and overview

Until recently, only the preemptive version of the speed scaling problem was considered. In

this thesis, however, we will only be concerned with the non-preemptive case, since there

is very little scientific knowledge on this variant of the problem. Initially, the main goal of

this thesis was to improve the (so far) best approximation ratio(1) in the case that all jobs

have the same work volume and there are multiple processors. The idea was to only rely

on the design of combinatorial algorithms, as opposed to adopting linear programming

(LP) solutions (which appears to be the common strategy in the current literature – see

chapter 2). The reasons for adopting an algorithmic point of view are: on one hand, the

lack of combinatorial results (in the time of the writing of this thesis) and, on the other

hand, the fact that LP methods are, usually, much slower than combinatorial ones and

they don’t really capture the essence of the problem. Although it requires some insight to

be able to formulate the problem as a linear program, LP resembles a “black-box” that

can be used to solve any kind of convex optimisation problems.

Unfortunately, it wasn’t possible to achieve this task within the desired time window,

given its difficulty. Hence, the goal changed into solving, in polynomial-time, special

instances of the non-preemptive speed scaling problem. The instances that were studied

were combinations of the following variants:

(i) dealing with more than one machine;

(ii) limiting the number of jobs with unrestricted size to a small constant;

(iii) restricting jobs lifetimes according to special rules (see section 1.4).

Sadly, only some of the tackled special cases resulted in reasonable scientific progress

(see chapter 3). The study and analysis of some of these special instances opened up the

possibility for (i) improving the time complexity in the case that all jobs have the same

work volume (see section 3.1), or (ii) proving that when a constant – O(1) – number of jobs

have no restrictions on their volume, the problem can still be solved in polynomial-time.

In the attempt of looking at this problem from a different point of view (and after

being stuck for a while with no major results), a different scheduling problem was con-

sidered. Naturally, both scheduling problems are, somehow, related, but a more detailed

(1)See section 1.3 for an explanation of this term.

3

1.3. Basic notions and further notes Chapter 1.

explanation is given in chapter 4. Despite having obtained interesting results, none of

them was further employed in the original problem, due to time constraints.

1.3 Basic notions and further notes

This section explains some of the notions present throughout this thesis and it revisits

some important concepts concerning near-optimal solutions.

Preemption. When preemption is allowed all the processors considered in a given problem

are able to interrupt and, later on, restart the execution of a job. Naturally, a non-

preemptive processor is not allowed to so and must, therefore, finish the execution of

one job before it can, either handle other jobs, or go idle (i.e., stop its execution). In

the presence of more than one processor, we might consider executing a job in several

processors. This procedure is called migration. In a migratory environment the processors

must also be preemptive, but the converse isn’t true.

Approximation algorithms. Today, it is common to give near-optimal solutions to

problems that are in NP, that is, problems for which there aren’t polynomial-time solutions

(unless P=NP). As the name indicates, near-optimal algorithms produce solutions (to

optimisation problems), whose cost (or objective value) is not too far from the optimal

one. One of the ways to prove the quality of near-optimal solutions is by determining its

approximation ratio, i.e., a factor β of the best objective value:

β =
OPT

ALG
,

where OPT and ALG represent, respectively, the objective values of the optimal solution

and the one given by the approximation algorithm. Naturally, the closer β is to 1, the bet-

ter is the approximation algorithm. This applies for both minimisation and maximisation

problems. A solution is a β-approximation if its approximation ratio is β.

A polynomial-time approximation scheme (PTAS) is an approximation algorithm that

can be tuned up to improve its approximation ratio, according to an additional parameter

ε > 0. The price is, naturally, the increase of the running time, but the optimal value

can be approximated to any desired degree. For minimisation problems, a PTAS produces

(1+ε)-approximations, whilst for maximisation problems, it builds (1−ε)-approximations.

The algorithm must run in polynomial-time with respect to the size of the problem for

every fixed ε. In other words, its running time is independent of ε. If the algorithm runs

in time polynomial in both the problem size and 1/ε, then it is a fully polynomial-time

4

Chapter 1. 1.4. Special instances

approximation scheme (FPTAS).

Structure of the thesis. This thesis is organised as follows. Chapter 2 summarises the

state-of-the-art in speed scaling research for both multiple and single processors. Chapter 3

presents the direct contributions made to special instances of the non-preemptive speed

scaling problem. Chapter 4 introduces a different problem whose aim is to schedule all jobs

in single speed processors while reducing the maximum job completion time (under some

job assignment restrictions). Solving this problem might give back some insight on how

to optimally schedule jobs in the speed scaling setting. This chapter presents a solution

and its proof of correctness for a special case of the problem. Finally, chapter 5 wraps up

all the contributions made in this thesis and briefly mentions the directions that can be

explored as a continuation of this work.

Note. The size of the speed scaling problem is denoted by n = |J | and, in the

presence of multiple processors, m denotes the total number of processors. Sometimes,

problems are denoted by an extension to the standard 3-field classification introduced

by Graham et al. [21]. For instance, the non-preemptive speed scaling problem is

denoted by S | rj , dj | E.

1.4 Special instances

Throughout the thesis we consider two special instances to the problem and both of them

are related to the structure given by the lifetime of every job. One of them, we denote by

agreeable deadlines and the other one by laminar instance. Both instances are of special

scientific interest, because their structures “complement” each other and, therefore, cover

a big fraction of the set of all possible instances of the problem(1). Laminar instances

are specially interesting, because of its extensive applicability (see section 1.4.2) and the

fact that they stress how hard it is to solve the non-preemtive speed scaling problem,

comparing to the preemptive version. As a matter of fact, one can use optimal preemptive

(and polynomial-time) algorithms to solve any agreeable deadlines instance of the non-

preemptive variant (see section 2.1).

1.4.1 Agreeable deadlines

This is the case when jobs released earlier have earlier deadlines. More precisely, an

instance with agreeable deadlines is an instance in which: for any two jobs j and j′ in J ,

(1)Naturally, it doesn’t cover all possible set of instances given that there can still be cases whose stru-
cuture is a mix of both special instances.

5

1.4. Special instances Chapter 1.

if rj < rj′ , then di ≤ dj′ . Figure 1.2 contains an example of such an instance.

This special structure of the jobs lifetimes is very important, because it, somehow,

gives hints to the order of execution of jobs, making the problem slightly easier to solve.

In fact, as it is mentioned in section 2.1, there is a polynomial-time algorithm ([35]) that

always returns a non-preemptive solution to this particular problem. Hence, this special

instance is in P .

Figure 1.2: Illustration of an instance with agreeable deadlines, where each horizontal segment
corresponds to the lifetime of a job.

1.4.2 Laminar instance

An instance is laminar if for any two jobs j, j′ ∈ J , one of the following happens:

• [rj , dj) ⊆ [rj′ , dj′)

• [rj , dj) ⊇ [rj′ , dj′)

• [rj , dj) ∩ [rj′ , dj′) = ∅

This definition can be seen as the “complement” of an instance of agreeable deadlines: for

any two jobs with overlapping lifetimes, the one released earlier has a latter deadline.

This kind of problem instances was first explored by Li, Liu and Yao in [28] and it is

of scientific interest, because it reflects properties of recursion (see fig. 1.3). Given that

there is a wide range of recursive applications in the real world, laminar instances can be

used in many practical situations, such as recursive programs(1).

In the following section, we consider an even more strict instance to the problem.

(1)This is the case where jobs correspond to recursive calls.

6

Chapter 1. 1.4. Special instances

1.4.2.1 Purely laminar instance

A special case of laminar instances is when for any two different jobs j, j′ ∈ J , we have

that:

[rj , dj) ∩ [rj′ , dj′) 6= ∅.

This implies that the lifetimes of all jobs in J form a pile of successive wider lifetimes,

if ordered by inclusion (see fig. 1.3). This instance is called purely laminar and it is of

particular interest because it is easier to solve and its structure is very simple. In fact,

there is already a fully polynomial-time approximation scheme(1) (FPTAS) for it, which

implies that this special instance of the problem is weakly NP-hard [22].

Figure 1.3: Illustration of a laminar instance, where each horizontal segment corresponds to the
lifetime of a job. It is easy to see how purely laminar instances (red inner most containers) are a
special case of laminar instances.

(1)See section 1.3 for an explanation of this term.

7

1.4. Special instances Chapter 1.

8

Chapter 2

Previous work

This chapter provides an overview of the most relevant theoretical results accomplished

in the speed scaling setting, using one or more than one processors.

As it is known, the speed scaling problem was first introduced by Yao, Demers and

Shenker [35] in 1995. However, the idea of reducing energy consumption in job scheduling

was first studied by Weiser et al. [33] and Govil et al. [20].

2.1 Single processor

Yao, Demers and Shenker gave, in the same paper that formalises the speed scaling problem

[35], a very simple greedy algorithm that finds an optimal schedule in polynomial-time.

This algorithm was later baptised as YDS, give the names initials. In the same paper, the

authors proposed also two online algorithms(1) – Optimal Available and Average Rate –

and, for the second one, they proved that its competitiveness(2) is αα2α−1. The first one

was analysed by Bansal et al. [12] and they showed that it can achieve a competitive ratio

of αα. Moreover, they improved the competitiveness to 2(α/(α − 1))αeα by designing a

new online algorithm. They also showed that the competitive ratio of any randomised

algorithm(3) is lower bounded by Ω((4/3)α).

Until recently, not so much was known in the non-preemptive version of the problem.

Its complexity was only established in 2012 by Antoniadis and Huang [6], through a

reduction from the 3-Partition problem. In the same paper, the authors gave a 25α−4-

approximation algorithm for this problem. Later on, this result was improved to 2α−1(1 +

ε)αB̃α (for any α < 114) in [10] where B̃α is the α-generalized version of the Bell number,

(1)An online algorithm doesn’t know the whole input data in advance and must, therefore, complete each
subsequent request with some level of uncertainty.

(2)The competitiveness of an online algorithm compares its performance against an optimal offline algo-
rithm that is able to see “future” input [30]. More specifically, it’s defined as the worst-case ratio between
the objective values of the solutions given by the online and optimal offline algorithms.

(3)This is a kind of algorithm that uses probabilistic methods as part of its policy.

9

2.2. Multi-processor Chapter 2.

introduced by the authors. After that, Cohen-Addad et al. improved the bound to

(12(1 + ε))α−1 [15], for any α > 25. In [11], the authors explored the idea of transforming

an optimal preemptive schedule to a non-preemptive one. In addition, they achieved an

approximation ratio of (1 + wmax
wmin

)α, by using the optimal preemptive solution as a lower

bound. In the special case of equal work volumes, this ratio becomes constant: 2α. The

current best approximation ratio for this setting is (1 + ε)αB̃α for all α < 77, as described

in [9]. For the case that jobs share the same work volume, optimal polynomial-time

algorithms (based on dynamic programming) were given (independently) by both Angel

et al. [4] and Huang and Ott [22]. Other special cases of the problem (concerning the

structure of the life intervals of jobs) were also taken into account in [22]. For agreeable

instances (see subsection 1.4.1), the solution given by Yao et al. in [35] is optimal since it

never builds a preemptive schedule [6].

Another way of reducing power consumption is by admitting that the processors can

be idle and, therefore, be in a state that uses, substantially, less energy. This mechanism,

generally known as Sleep State, considers also the fact that awaking processors from their

sleep state requires some amount of extra energy. The idea of considering this energy

reduction mechanism in the speed scaling setting was first explored by Irani, Shukla and

Gupta in [24], where it is given an offline algorithm with an approximation ratio of 3.

More recently, Antoniadis, Huang and Ott [7] designed an FPTAS for the same problem.

2.2 Multi-processor

In this section, we distinguish between homogeneous and heterogeneous processors. Pro-

cessors are homogeneous if their power consumption is equivalent, or otherwise, they are

considered heterogeneous [9]. Moreover, in a fully heterogeneous environment, the work

volume, release date and deadline of each job is dependent on the processors that executes

it.

In the multi-processor environment there are several contributions for the preemptive

and (non)migratory settings, but not so much for the non-preemptive version, whose

current solutions rely on linear programming (LP) configurations. For the cases when

both preemption and migration are allowed there are a few polynomial-time algorithms in

the literature, namely in [2, 5, 8, 13]. In the fully heterogeneous version, Bampis et al. [10]

gave a FPTAS, which relies on an LP formulation. The problem becomes strongly NP-hard

when preemption is allowed but not migration [3]. In this article it’s also described how a

PTAS(1) can be achieved on the special case of equal release dates and deadlines for all the

jobs. Without this last restriction and, when the set of processors is fully heterogeneous,

there exists an approximation algorithm (again, based on LP) of ratio (1 + ε)αB̃α [10].

(1)See section 1.3 for an explanation of this term.

10

Chapter 2. 2.2. Multi-processor

Regarding non-preemption and homogeneous processors, Cohen et al. [15] achieved an

approximation ratio independent of the number of processors: (5/2)α−1B̃α((1 + ε)(1 +
wmax
wmin

))α. This result was recently improved in [9] to B̃α((1 + ε)(1 + wmax
wmin

))α and it is also

valid for the fully heterogeneous setting.

11

2.2. Multi-processor Chapter 2.

12

Chapter 3

Analysis and improvements

The non-preemptive speed scaling problem with one processor is strongly NP-hard. This

was demonstrated by Antoniadis and Huang in [6] with a simple reduction from the 3-

Partition problem. Nevertheless, when all jobs have the same work volume, the prob-

lem becomes polynomial-time solvable. Two independent and exact solutions were given

(Huang and Ott [22] and Angel et al. [4]) and both of them rely on a dynamic program

that takes O(n21) time to be solved. In section 3.1 it is shown, by a simple analysis, how

this time complexity can be improved by a factor of n8. Furthermore, section 3.2 demon-

strates that, when only a constant number of jobs have unrestricted volumes, the problem

is still in P. After these results, more general instances of the problem were explored, such

as: increasing the number of different job sizes, or assuming that more than one processor

can schedule jobs. Unfortunately, solving these turned out to be quite hard and only

results of small impact were obtained (see section 3.3). The main obstacle to achieving

reasonable scientific progress was (every time) handling nested lifetimes, i.e., those that

define laminar instances (see section 1.4.2). This highlights even more the difficulty of

solving such instances of the problem. Recall that, in the presence of agreeable deadlines,

the non-preemptive speed scaling problem is in P (as mentioned in section 2.1). Moreover,

the proof of NP-hardness for the general non-preemptive speed scaling problem uses, by

itself, a laminar instance of the problem (see [6]).

3.1 Jobs of equal work volume

We consider a variation of the non-preemptive speed scaling problem where all jobs have

the same work volume, i.e., wj = w for all j ∈ J . We denote the problem by S | rj , dj , wj =

w | E, an extension to the standard 3-field scheduling notation introduced in [21].

We start by briefly explaining the crucial argument for the optimality of the polynomial-

time solutions given in Huang and Ott [22] and Angel et al. [4].

13

3.1. Jobs of equal work volume Chapter 3.

Let us call event a time point t such that: t = rj ∨ t = dj for some job j ∈ J .

Observation 1. In an optimal schedule, the processor only changes speed at events.

Observation 1 follows from Jensen’s Inequality(1) [25] and the convexity of the power

function associated with the processor. A detailed proof is given by Angel et al. in [4,

Proposition 5].

Both papers [22] and [4] take advantage of obs. 1 to define a polynomial-size set (w.r.t.

|J |) whose elements are the endpoints of possible optimal execution intervals for a job.

From now on, we will focus on the solution given by Huang and Ott [22], because it’s

simpler. In their paper, the set mentioned above is denoted by Pexact and its elements are

called grid points.

Definition 1 (Pexact). For every two events t, t′ and for every k ∈ {1, . . . , n}, create

k−1 equally spaced grid points that partition [t, t′) into k subintervals of equal length.

Moreover, create grid points for t and t′. The set Pexact is defined by the union of all

these grid points.

As a consequence of obs. 1, the authors make the following deduction:

Observation 2. In all optimal schedules, every job is executed in an interval [s, t), where

s and t are elements of Pexact.

Before proving obs. 2, we need to introduce the concept of phase, originally used in

[22, Proof of Lemma 2].

Definition 2 (Phase). A phase is a time interval in which the processor works at a

constant speed, for a given schedule of jobs.

Proof of obs. 2. We reproduce the proof given in [22, Proof of Lemma 2]. Let S∗ be any

optimal schedule. We know from obs. 1 that the endpoints of every phase correspond

to events. Moreover, every job in S∗ is processed using an uniform speed. This follows

directly from Jensen’s inequality. Hence, every phase defines an interval where a number

k of jobs are executed to completion, in a uniform speed. What’s more, their execution

intervals have the same length in that phase, since all jobs have the same work volume.

(1)An illustration of Jensen’s Inequality is given in the front page of this thesis.

14

Chapter 3. 3.1. Jobs of equal work volume

In other words, every phase in S∗ is defined by consecutive execution intervals of the

same length. This implies a partition of each phase by k−1 equally spaced time points. It

is clear from its definition, that Pexact includes all these partition points for every possible

phase and for every k ∈ {1, . . . , n}.

The next section specifies how the authors solve this problem, using the above infor-

mation.

3.1.1 The dynamic program

Following is an explanation of how Huand and Ott [22] solves the problem using dynamic

programming. For a more detailed explanation the reader is recommended to look at the

original paper.

Every dynamic program (DP) must satisfy 2 properties: optimal sub-structure and

overlapping sub-problems.

Optimal sub-structure. One of the consequences of obs. 2 is that we can try all possible

schedules for each job j ∈ J in polynomial-time, according to the set Pexact. For each

attempt, we then focus on two different sub-problems: one schedules jobs before j and,

the other one, after. Figure 3.1 illustrates the idea.

Figure 3.1: Recursive step in the dynamic program divides main problem into two sub-problems
(A and B), according to a partition of the time axis. The red rectangle corresponds to the execution
interval [a, b) of job j and both a and b belong to Pexact.

If these two sub-problems are independent, then an optimal solution to both combined

with the optimal execution interval of j gives an optimal solution to the main problem.

The difficulty relies on ensuring that the sub-problems are independent, which, in this case,

implies partitioning the remaining jobs into two sets. Huang and Ott solved this issue by

introducing the notion of a lexicographic order of schedules. Considering this, jobs are

partitioned according to the order of jobs given by the smallest lexicographic schedule

that processes j in its guessed execution interval. More specifically, if Jq is to be executed

in the interval [a, b), then all jobs {Jk | k > q ∧ dJk ≤ eJq} must be completely processed

before Jq, given the deadline constraints. Moreover, all jobs {Jk | k > q ∧ eJq < dJk} must

be completely processed after Jq, or otherwise the resulting schedule isn’t lexicographically

15

3.1. Jobs of equal work volume Chapter 3.

smallest (easily verified by contradiction, using a simple jobs swapping argument)(1).

Overlapping sub-problems. Every problem is divided into independent sub-problems

by partitioning the set of remaining jobs according to the time horizon. From this, it is

clear how, eventually, sub-problems will overlap (i.e., be solved more than once).

Having covered all properties of a DP, we are now in conditions of (re)formulating the

program designed by Huang and Ott.

Definition 3 (Dynamic program according to [22]). Let E(i, g1, g2, g3) define an

optimal schedule for jobs {Jk | k ≥ i ∧ g1 < dJk ≤ g3} using only the interval [g1, g2).

It is important that no job is scheduled in [g2, g3). Jobs in J are considered to be

ordered by increasing release times:

rJ1 ≤ rJ2 ≤ . . . ≤ rJn .

The DP is given by the following recurrence relation:

E(i, g1, g2, g3) := min
a,b∈Pexact

{ energy(q, [a, b)) + E(q + 1, g1, a, b) + E(q + 1, b, g2, g3) |

(g1 ≤ a < b ≤ g2) ∧ (a ≥ rq) ∧ (b ≤ dq) },

where:

• q is the smallest job index in {Jk | k ≥ i ∧ g1 < dJk ≤ g3}
• a and b are (respectively), the beginning and end of Jq’s execution

• energy(x,∆) is the amount of energy required to process job Jx during interval ∆

The optimal schedule is given by E(1, r∗, d∗, d∗), where r∗ is the earliest release time

and d∗ is the latest deadline over all the jobs in J . Base cases are given by:

E(i, g1, g2, g3) =

0, if {Jk | k ≥ i ∧ g1 < dJk ≤ g3} = ∅

∞, if ∃k ≥ i : g1 < dk ≥ g3 ∧ [rk, dk] ∩ [g1, g2) = ∅.

Complexity. To analyse the complexity, we must know the size of Pexact. According

definition 1, for every pair of events (t, t′) we create:
n∑
k=1

k + 1 = O(n2) grid points.

(1)The reader can find more information in [22, section 4]

16

Chapter 3. 3.1. Jobs of equal work volume

Furthermore, the total number of pairs of events is 2n ·(2n−1) = O(n2) (recall obs. 1).

Hence: |Pexact| = O(n4).

The overall time complexity of the algorithm is O(n21), since the DP computes O(n ·
|Pexact|3) entries and, for each entry, it minimizes over O(|Pexact|2) different possibilities

– one for each possible execution interval [a, b) of a job.

3.1.2 Improving the time complexity

In this section it is shown how we can further improve the time complexity of the solution

explained in section 3.1.1, by simply doing a better analysis of the problem. The method

described here can, obviously, be adapted to the solution given in [4] by Angel, Bampis

and Chau.

We exploit the fact that, in order to determine the execution interval of a job, it is

only necessary to look at pairs of grid points that were created (simultaneously) during

the partition of a specific interval of time defined by two events (see definition 1 – Pexact).
With this idea in mind, we can reformulate the problem and replace the notion of grid

points with the notion of grid intervals.

Definition 4 (Grid intervals set I). For every two events a, b and for every k ∈
{1, . . . , n}, partition [a, b) into k grid intervals of equal length. The union of all these

intervals defines the set Ia,b. Formally,

Ia,b =
⋃

1≤k≤n
{ [a+ iδ, a+ (i+ 1)δ) | 0 ≤ i ≤ k − 1},

where δ = b−a
k .

Finally, the intervals set is given by

I =
⋃
a,b

{ Ia,b | a, b are events }.

Although slightly smaller(1), the size of this set is of the same order of complexity as

|Pexact|, i.e., |I| = O(n4). However, one can guess the execution interval of a job by simply

looking at the elements of I, instead of (Pexact)2.

Lemma 1. In all optimal schedules, every job is executed in one of the intervals of I.

(1)For each pair of events we create k intervals, instead of k − 1 points

17

3.1. Jobs of equal work volume Chapter 3.

Proof. We know from the proof of obs. 2 that, in any optimal solution, every job is executed

in an interval defined by time points that partition a specific phase (recall definitions 1

(Pexact) and 2 (phase)). Considering this, it is clear from its definition, that the set I only

includes such intervals of execution.

In the DP definition in section 3.1.1, we are taking into consideration execution inter-

vals defined by grid points that might “belong” to different phases. This is unnecessary

and inconsistent with the proof of obs. 2, which states that, in any optimal schedule, jobs

are executed in a specific phase, along with a specific number of jobs. Figure 3.2 illustrates

an example of a unnecessary attempt of scheduling a job.

Figure 3.2: Example of an unnecessary attempt of scheduling some job (grey rectangle) – see
lemma 1. In this diagram a and b represent the endpoints of a phase (see definition 2) and the
timepoints γi (resp. δi) account for the fact that four (resp. three) jobs are to be scheduled in
[a, b).

3.1.2.1 The improved DP

With the new definition of a set of grid intervals, each entry E(i, g1, g2, g3) can be computed

by minimising over |I| different possibilities. One for each possible execution of Ji.

Furthermore, the number of entries can also be reduced. By looking at the recursive

definition of E(i, g1, g2, g3) in definition 1, we notice that g2 and g3 always correspond

(respectively) to the beginning and end of the execution interval of an already scheduled

job.

Taking everything into consideration, we can now redefine the dynamic program re-

currence relation as follows:

E(i, g,∆) := min
τ∈I
{energy(q, τ) + E(q + 1, g, τ) + E(q + 1, τend,∆) |

τ ⊆ [g,∆start) ∧ τ ⊆ [rq, dq)},

assuming that χstart and χend represent, respectively, the beginning and end time points

of an interval χ. Figure 3.3 illustrates the above recurrence relation. The base cases are,

similarly, defined.

The partition of jobs for sub-problems E(q + 1, g, τ) and E(q + 1, τend,∆) is done in

the same way as in the original DP [22].

18

Chapter 3. 3.2. A constant number of jobs have unrestricted volumes

Figure 3.3: Representation of each sub-problem of the improved DP, where τ corresponds to a
possible execution interval for the job we are, currently, trying to schedule.

Theorem 1. The improved DP solves optimally the problem S | rj , dj , wj = w | E in

O(n13) time.

Proof. Correctness of the improved DP follows easily from lemma 1 and its similarity to

the DP defined by Huang and Ott [22]: the only difference between both is the intervals set

used. The overall complexity is O(n13), since the number of entries is now O(n·|Pexact|·|I|)
and, for each entry, there are O(|I|) possible ways of executing a job.

3.2 A constant number of jobs have unrestricted volumes

We consider a variation of the problem defined in section 3.1, by assuming that c = O(1)

jobs in J can have any volume. We denote this problem by S | rj , dj , wj ∈ {w,w1, . . . , wc} |
E, an extension to the standard 3-field classification introduced by Graham et al. in [21].

In this section, we will show that this problem is still in P.

Let us decompose the set of jobs into J = J∗ ∪ J=, where J∗ is the set of the c

jobs that don’t have restrictions on their volume and J= is the set of the the remaining

(equal-volume) jobs.

Recall that a processor only changes speed at events (see obs. 1) and that each phase

(defined by a pair of events) is an interval where a number of jobs are fully executed, in a

uniform speed (see proof of obs. 2). Naturally, we can no longer consider that all jobs (in

the same phase) are executed during the same amount of time.

Therefore, we need to extend the definition of the set of grid intervals (see definition 4).

We will denote this new set by I ′. As in I, this set includes all possible (optimal) intervals

of execution for all jobs in J . Notice that, despite its size being increased substantially

(we now have c jobs of unrestricted volumes), we will show that it is still in P.

19

3.2. A constant number of jobs have unrestricted volumes Chapter 3.

3.2.1 Extended grid intervals set I ′

Let K denote a set of jobs that are to be scheduled in a phase [a, b). Moreover, consider

a permutation π : K → N+, which expresses a scheduling order of the jobs in K.

Since the processor speed is constant during the whole phase, we can easily determine

the length ∆j of the execution interval of the jth scheduled job (using the order given by

π). From here, we can determine the execution intervals of all jobs in K. Hence, create a

grid interval for each of them, excluding the unfeasible intervals.

Now, let us do the same for all permutations π of each set of jobs K ∈ P(J), where P is

the power set function. The set of all created grid intervals is denoted by I ′a,b. Formally,

I ′a,b =
⋃

K∈P(J)

⋃
π∈Π(K)

{ [a, a+ ∆1), . . . , [a+

k−1∑
i=1

∆i, a+

k∑
i=1

∆i) },

where Π(K) is the set of all permutations of jobs in K and ∆i =
wl(b− a)∑

j∈K wj
, such that

π(l) = i.

Finally, let the new set of grid intervals I ′ be the reunion of the sets I ′i,j , for all

possible phases:

I ′ =
⋃
i,j

{ I ′i,j | i, j are events }.

Lemma 2. The size of I ′ is polynomial, with respect to |J |.

Proof. Since it is hard to give a precise value of the size of I ′, we will give an estimation

by computing upper and lower bounds.

We begin by estimating the size of I ′a,b. Assume, for now, that k jobs are to be

scheduled in phase [a, b) and that from these, k∗ jobs belong to J∗ (i.e. have unrestricted

volume). The total number of permutations is k!, but we are not concerned with the order

of jobs of equal volume, since different orderings will always translate into the same set of

execution intervals. Hence, the number of relevant permutations to consider is:

k!

(k − k∗)!
= k(k − 1) . . . (k − k∗ + 1) < kk

∗
.

For each permutation, we need to also estimate in how many ways we can select k∗

jobs from J∗: (
c

k∗

)
< 2c = O(1)

Finally, by taking everything into consideration, the number of distinct execution

20

Chapter 3. 3.2. A constant number of jobs have unrestricted volumes

intervals φk,k∗ is upper and lower bounded by

(k − k∗ + 1)k
∗
<

k!

(k − k∗)!
≤ φk,k∗ ≤ k k

(k − k∗)!

(
c

k∗

)
< kk

∗+12c .

Note that φk,k∗ cannot be less than the number of relevant permutations and that, for

each of them, we have k intervals. In addition, the value of φk,k∗ is upper bounded (and

not exact), since there might still be overlapping intervals among different permutations.

However, it is hard to also account for these. Thus, we consider only that:

φk,k∗ < kk
∗+12c = O(kk

∗+1).

Furthermore,

|I ′a,b| =
n∑
k=1

min(k,c)∑
k∗=1

φk,k∗

≤
n∑
k=1

c∑
k∗=1

O(kk
∗+1)

< c ·
n∑
k=1

O(kc+1)

< c ·O(nc+2)

= O(nc+2)

Finally, we can determine the size of the new set of grid intervals. |I ′| = O(n2) · |I ′a,b| =
O(nc+4) = O(nO(c)), since there are O(n2) phases. Since c is a constant, the size of I ′ is

polynomial with respect to n = |J |.

3.2.2 The solution

The following algorithm is a very naive solution, but it is enough to show that the problem

is still in P.

21

3.2. A constant number of jobs have unrestricted volumes Chapter 3.

Algorithm Extended DP: S | rj , dj , wj ∈ {w,w1, . . . , wc} | E

1. Compute all possible schedules Ω for jobs J∗

2. FOR EACH schedule ω in Ω DO

(a) Let I be the set of execution intervals of jobs J∗ in ω

(b) Let I ′ = {i | i ∈ I ′ and i does not intersect any interval in I}

(c) Let s be the schedule that combines ω with the schedule returned by

the improved DP for the remaining jobs, using the intervals set I ′.

(d) IF the amount of energy required in s is the smallest so far THEN

i. Let s∗ = s

3. RETURN s∗

The “improved DP” mentioned in step 2.(b) is the one described in section 3.1.2.1.

Theorem 2. Algorithm Extended DP returns an optimal solution to S | rj , dj , wj ∈
{w,w1, . . . , wc} | E in time polynomial in n = |J |.

Proof. Assuming that c is a small number, we can afford to enumerate all possible schedules

of jobs J∗ of unrestricted volume. We know that at least one of them is in the optimal

solution, so the algorithm finds it. Step b) of the algorithm makes sure that we won’t

have overlapping execution intervals, which lets us build a feasible and optimal schedule

from the solution given by the improved DP (see theorem 1). This way, it follows, from

the optimality of the improved DP, that alg. Extended DP returns an optimal solution.

The number of schedules computed in step 1. of the algorithm is O(|I ′|c). For each

of them, the heaviest computation we do is solving the improved DP for a subset of I ′,
which takes O(n|I ′|3) time to solve (see lemma 2). Therefore, the overall time complexity

is

O(|I ′|c) ·O(n|I ′|3) = O(n|I ′|c+3)

= O(nO(c2)).

As long as c is a constant, alg. Extended DP builds an optimal schedule in polynomial-

time w.r.t. n = |J |.

Corollary 1. The problem S | rj , dj , wj ∈ {w,w1, . . . , wc} | E is in P.

22

Chapter 3. 3.3. Other improvements and unsuccessful directions

3.3 Other improvements and unsuccessful directions

In the attempt of solving the non-preemptive speed scaling problem from different per-

spectives, other contributions (and unsuccessful attempts) were made to instances of the

problem that generalise the case that all jobs have the same volume. Although some of

the accomplished improvements are not so relevant, they were included in this section,

because they reflect the amount of work and time invested in this thesis. Moreover (and

more importantly), the ideas presented here might give insight to more inspiring results

in the future. It is worth mentioning that these smaller improvements rely on extensions

of the dynamic programming algorithm given by Huang and Ott [22] and revisited here

in section 3.1.

After being stuck for a while with no major results in any of the attempted instances

of the problem, a different approach was pursued, which consisted in solving a different

scheduling problem (see chapter 4).

3.3.1 Single processor

Following is an unsuccessful attempt at extending the solution given by Huang and Ott

[22] to include two job volumes, instead of only one. After this, it is shown how we can

improve the time complexity of the same algorithm when in the presence of a purely

laminar instance. Towards the end of this section, the reader can have an idea of why this

simple problem is not as easy to solve as one might think. In addition, some of the (not

so lucky) attempts to solve this particular problem are, briefly, mentioned.

Two job volumes. Assume that all jobs have a work volume of either w1 or w2 and that

w1 divides w2. Recall from section 3.1.1 that, when all jobs of equal volume, we partition

the jobs in the recursive step of the dynamic program, into two sets J− := {Jk | k >

q ∧ dJk ≤ eJq} and J+ := {Jk | k > q ∧ eJq < dJk}, that are executed (respectively)

before and after Jq (the job we are currently scheduling). Correctness of this partition

follows from the lexicographic notion introduced by the authors(1). However, it is easy to

see that this strategy no longer works for two job volumes: if wJq = w1, then the argument

is only valid for jobs whose volume is w1.

For simplicity, assume that w1 = 1 and w2 = 2. Suppose that we are also trying to

schedule a job j in the interval [a, b) and that wj = 2. We know that the partition can be

made for all jobs of volume 2, so just consider the remaining jobs. From these, it is clear

that all jobs j with dj ≤ b or rj ≥ a, must go (respectively) to J− and J+. The jobs we are

left with (let us denote them by J̃) are the problematic ones, since they can be assigned

(1)A detailed argument is given in [22, section 4].

23

3.3. Other improvements and unsuccessful directions Chapter 3.

to any of the sets. A brute-force solution would try out all 2|J̃ | possible combinations

of partitioning these jobs. Originally, the idea was to take advantage of the multiplicity

of the job volumes and reduce the number of possible combinations by ensuring that no

two jobs of J̃ can be scheduled consecutively before Jq. If they were, then we could swap

both of them with Jq and get a smaller lexicographic schedule. But, clearly the resulting

schedule isn’t, necessarily, lexicographically smaller. If this idea worked, it would solve

the problem in sub-exponential time (w.r.t. the number of jobs n).

Purely laminar instances. We assume that all jobs have the same work volume. As in

section 3.1.1, consider that the jobs are ordered by increasing order of their release times.

In the presence of a purely laminar instance, this implies the following:

[rJ1 , dJ1) ⊇ [rJ2 , dJ2) ⊇ . . . ⊇ [rJn , dJn)

We take advantage of the following observation.

Observation 3. Let πS : {1, . . . , n} → {1, . . . , n} denote the order of execution of jobs for

a schedule S, such that πS(i) denotes the index of the ith executed job. In a purely laminar

setting (where all jobs have the same volume), there exists an optimal schedule S∗ of all

jobs J such that, for some k ∈ {1, . . . , n}, we have that:

• πS∗(1) < πS
∗
(2) < . . . < πS

∗
(k), and

• πS∗(n) < πS
∗
(n− 1) < . . . < πS

∗
(k).

Proof. We want to prove, in other words, that there exists a schedule S∗ such that the

function πS
∗

has only one local (and, hence, global) maximum. If not, then there is a job

executed in the lth position (for some l ∈ {2, . . . , n− 1}) such that:

πS
∗
(l − 1) > πS

∗
(l) and πS

∗
(l) < πS

∗
(l + 1).

Let j1 and j2 be the jobs indexed by, respectively, πS
∗
(l) and min(πS

∗
(l − 1), πS

∗
(l + 1)).

Now, let us change S∗ by swapping the execution intervals of the jobs j1 and j2. It can

be easily verified that such modification does not violate any restrictions associated with

the release times and deadlines of the involved jobs. If we repeat this procedure until πS
∗

has only one local maximum, we get a feasible and optimal schedule S∗.

Intuitively, the above observation tells us that there is always an optimal schedule in

which: (i) before the execution of Jn, jobs are processed in increasing order of their indexes

and (ii) after the execution of Jn, jobs are processed in decreasing order of their indexes.

If Jn is the first (last) job executed, then of course no job is executed before (after) it.

Unfortunately, the total number of job orderings is still exponential in n. If i jobs are

24

Chapter 3. 3.3. Other improvements and unsuccessful directions

to be scheduled before Jn, then there are
(
n−1
i

)
many possible orderings. Hence, for all

0 ≤ i ≤ n− 1:
n−1∑
i=0

(
n− 1

i

)
= 2n−1 ∈ O(2n).

Nevertheless, we can still benefit from something: we can, actually, skip the partition

of jobs that occurs in the recursive step of the dynamic programming solution (see sec-

tion 3.1.1). If we try to schedule each job j in J by increasing order of the jobs indexes,

we know (according to obs. 3) that j must be executed in one of the two extremes of the

only time window that is currently available for scheduling (see fig. 3.4). Thus, we have

less ways of possibly scheduling j. Assume w.l.o.g. that j is to be scheduled in the left

extreme, right after the processing of job j′. If the end of the execution of j′ does not

mark the end of a phase(1), there is even just one possibility of scheduling j. Otherwise,

we have O(n) possible ways of assigning j to a phase that starts immediately after j′’s

execution, instead of the usual O(n2) possibilities (see section 3.1.1). Note that the num-

ber of possibilities only doubles if we also consider executing j in the right extreme of the

available time window. With this idea in mind, a straightforward extension of the previ-

ously given dynamic program solves this particular problem in O(n8) time, improving the

time complexity by a factor of n5. The recurrence relation can be defined as follows:

E(i,∆) := min
τ∈I
{ energy(i, τ) + E(i+ 1,∆ \ τ) |

τ ⊆ ∆ ∧ (τstart = ∆start ∨ τend = ∆end) },

where E(i,∆) denotes the amount of energy necessary to schedule all jobs j ∈ J in

the available time window ∆, such that rj ≥ ri. Note that, unlike the dynamic program

described in section 3.1.2.1, ∆ represents the time interval where jobs need to be scheduled.

Moreover, we no longer need the extra parameter g ∈ Pexact, which makes a substantial

reduction in the time complexity. The base cases can be, trivially, determined from the

above recurrence. Unexplained notation is introduced in section 3.1.1.

Figure 3.4: One of the consequences of obs. 3 is that we can schedule jobs by increasing indexes
to the extremes of the current available time window (assuming jobs are ordered by increasing
release times). In this case J6 denotes the job we are, currently, trying to schedule.

(1)a phase is an interval of time (defined by two events) during which the processor doesn’t change speed

25

3.3. Other improvements and unsuccessful directions Chapter 3.

Note. Unlike the original dynamic programming solution, we don’t need to worry

about partitioning the set of remaining jobs, when computing each entry of the dy-

namic programming table: there is only one recursive call and the time window is

never split up into additional ones. Nevertheless, it is easy to see that the overlapping

sub-structure property† is still present.

†See section 3.1.1 for a more detailed explanation of this concept.

Following is another interesting observation with regard to this special instance of the

non-preemptive speed scaling problem.

Observation 4. In a purely laminar setting (where all jobs have the same work volume),

every phase [a, b) of an optimal solution starts by executing a job j ∈ J if rj = a and

finishes with the execution of some job j′ ∈ J if dj′ = b.

Proof. It is easy to see that, in a purely laminar setting where all jobs have the same work

volume, every optimal solution has only one phase that starts in some release time ri and

ends in some deadline dj for two jobs i and j in J . All the phases before the interval

[ri, dj) are, exclusively, defined by release times and, similarly, all the phases after [ri, dj)

are, exclusively, defined by deadlines. This follows from the special structure of purely

laminar instances (see fig. 3.5).

The rest of the proof follows easily from Jensen’s inequality [25]. Suppose that, in an

optimal solution, there is a phase [rj , y) that starts by executing a job j′ and such that

rj 6= rj′ . Then, it must be the case that [rj′ , dj′) ⊃ [rj , dj). However, in this case, we could

let the phase [rj , y) start earlier and, therefore, balance out the energy spent during the

time given by this and the phase immediately before. Even a tiny change in the starting

time is allowed (since rj′ < rj) and produces a more efficient schedule, given the convexity

of the power function associated with the processor (Jensen’s inequality [25]).

Unfortunately, no benefit was discovered from this last observation.

What makes this simple problem (at first sight) so difficult to solve is the (apparent)

non-existence of a greedy strategy that is able to solve the problem of deciding the ordering

of jobs. Even by taking into consideration obs. 3, one cannot pre-determine if a given job is

supposed to be scheduled either before or after Jn. Other attempts were made to solve this

particular issue. One of them (i) consisted in solving a dynamic program that solves sub-

problems according to the different job orderings, but no relation could be found between

sub-problems having similar job orderings. Another attempt (ii) consisted in identifying

26

Chapter 3. 3.3. Other improvements and unsuccessful directions

Figure 3.5: Illustration of jobs lifetimes in purely laminar instances. Release dates are given in
red and deadlines in grey. Consider that i = Ji (for all i) and that jobs are ordered by increasing
release times.

independent sub-problems based on the length of the lifetimes(1) of every job. The idea

would be to exploit the fact that jobs with very narrow lifetimes will never be executed

at the same speed as jobs with substantially bigger lifetimes, if these are in small number.

Figure 3.6 illustrates this point. After identifying the simpler sub-problems, one could use

the regular DP to solve them independently. Finally, (iii) several reductions to problems

involving flow networks were also explored, but none of them yielded interesting results.

The general idea was to model the space of possible intervals of execution (in a single

processor) as nodes of a flow network. This strategy was based on the work done by:

Bampis et al. [8], Albers et al. [2] and Angel et al. [5], in the multi-processor setting and

some of the covered problems included variations of the assignment problem [26] and of

the minimum cost circulation problem [32]. Unfortunately, the time complexity can easily

become huge, given that the number of nodes in the network is at least in the order of

O(n4).

(1)Recall that lifetimes are time intervals defined by the release time and deadline of the jobs.

27

3.3. Other improvements and unsuccessful directions Chapter 3.

Figure 3.6: Illustration of the idea of exploiting big differences in jobs lifetimes. In this instance,
we can solve, independently, each of the sub-problems given by the blue and red containers (each
including a set of jobs). It is easy to see that the smallest execution interval in the blue sub-problem
will always be greater than the largest execution interval in the red sub-problem.

3.3.2 Multi-processor

Other attempts were also made to solve special instances in the multi-processor non-

preemptive setting, but only one had results (see below). Most of the failed experiments

consisted in assigning jobs to processors in a greedy fashion, similarly to what has been

done by Albers et al. [3] when preemption is allowed and deadlines are agreeable – sort the

jobs according to release times, assign them to the processors in a Round Robin manner

and apply the YDS algorithm on each processor [35].

Purely laminar instances on m processors. Assume, once again, that all jobs have

the same work volume. As it is explained in section 3.3.1, one of the consequences of obs. 3

is that we can find an optimal solution in the single processor environment by using the

following strategy: schedule each job in increasing order of its release time, to an interval

that is immediately before or after the interval of execution of a previously scheduled

job. It is easy to see that obs. 3 is still valid in the multi-processor setting (considering

each processor, individually). With this idea in mind, we can make a straightforward

extension to the dynamic program described in the previous section, so that it works in

the multi-processor environment.

We define a dynamic programming algorithm that keeps track of (at most) m available

time windows (one for each processor) and schedules all jobs in increasing order of their

release dates. The amount of energy necessary to schedule all jobs j ∈ J , such that rj ≥ ri

28

Chapter 3. 3.3. Other improvements and unsuccessful directions

is computed according to the following expression:

E(i,∆1, . . . ,∆m) := min
τ∈I

1≤ι≤m

{energy(i, τ) + E(i+ 1,∆1, . . . ,∆ι \ τ, . . . ,∆m) |

τ ⊆ ∆ι ∧ (τstart = ∆ι
start ∨ τend = ∆ι

end) }.

Once again, we skip the details of the notation used, since it was first introduced in

section 3.1.1. The base cases are, also, easily determined from the above relation. Solving

this dynamic program takes O(mn4m+5) time, since, in the worst case, we have to compute

O(n4m+1) entries and, for each entry, the algorithm has to minimise over O(mn4) different

possibilities. If m is a constant, then this shows that this particular problem is still in P .

Note. Unlike the original dynamic programming solution, we don’t need to worry

about partitioning the set of remaining jobs, when computing each entry of the dy-

namic programming table: there is only one recursive call and the time windows of

each processor are never split up into additional ones. Nevertheless, it is easy to see

that the overlapping sub-structure property† is still present.

†See section 3.1.1 for a more detailed explanation of this concept.

29

3.3. Other improvements and unsuccessful directions Chapter 3.

30

Chapter 4

A different scheduling problem

Many problems in Computer Science have a very similar structure, despite of having

different formulations. Because of this property, we can use a very useful tool, by the

name reduction, which allows us to transform an unknown problem into one we understand

better – we might know its solution, complexity, etc. This is the basis for today’s study

and analysis of the field Computational Complexity Theory(1). Because some problems

can be reduced to others, we can categorise them, based on their relative difficulty (or,

complexity). Finding reductions to different problems is an interesting way of tackling a

problem difficult to solve and for whom we have no idea of its difficulty. Often, a good

reduction scheme manages to solve an open problem (or prove it is unsolvable), but it also

allows us to find solutions with better time/space complexities or stronger approximation

ratios.

Unfortunately, when two problems don’t share enough properties, finding reductions

can be very hard or not possible at all. Nevertheless, we can always take advantage of any

similarity between two problems. Building on this, Chien-Chung Huang and Sebastian

Ott [22] found a connection between the non-preemptive speed scaling problem (or a

special instance of it) to a variant of the well known multi-processor scheduling problem

(MSP) analysed by Garey and Johnson [17]. The connection results from adopting some

of the ideas used in the solution to the second problem, to design a QPTAS(2) that can

(approximately) solve laminar instances of the non-preemptive speed scaling problem.

The solution from which Huang and Ott based themselves is a PTAS, so it would be

interesting to see if it is possible to design an exact and faster algorithm for a more re-

stricted version of this problem – this strategy could even give rise to faster approximation

algorithms. This chapter explores this idea and it presents an optimal algorithm, along

with a detailed proof of correctness. Unfortunately, there was no time to further extend

(1)One of the well known textbook in this field is the one written by Garey and Johnson, “Computers
and Intractability: A Guide to the Theory of NP-Completeness” [17].

(2)Quasi-polynomial-time approximation scheme. Slower than a PTAS: its running time is npolylog(n) for
each fixed ε > 0.

31

4.1. The problem Chapter 4.

the results of this chapter to more general instances, or to apply them in the original

problem of this thesis. Nevertheless, this seems to be a promising strategy and something

that is definitely worth looking at in the future.

4.1 The problem

The problem studied here is a generalisation of MSP [17], whose formulation is: given a

set J of jobs and a set M of processors, the goal is to find a schedule of all jobs in J that

minimises the maximum job completion time Cmax. This is equivalent to minimising the

maximum makespan for all processors in M . Each processor executes (without interrup-

tions) at most one job j at a time, whose size – processing time – is pj units. Unlike the

speed scaling problem, there is no restriction on when a job can be executed and we can

no longer control the speed of the processor (assume that it’s constant). It is well known

that this problem (MSP) belongs to the NP-hard complexity class.

It might seem counterintuitive, but we are, actually, interested in a harder version of

the problem: one in which jobs might not be allowed to be scheduled in every processor.

Following the notation used by Muratore, Schwarz and Woeginger in [29], this problem

is denoted by scheduling with job assignment restrictions, or R | pij ∈ {pj ,∞} | Cmax(1),

using the 3-field classification introduced by Graham, Lawler, Lenstra and Kan in [21].

This particular problem generalises MSP in the sense that each job j ∈ J can only be

scheduled in one of the machines(2) given by M(j) ⊆ M . As such, we know that this

problem is at least NP-hard, but we lack complete knowledge of its approximability. So

far, the strongest approximation algorithm was designed by Lenstra, Shmoys and Tardos

[27], whose approximation ratio is 2, even for the more general problem R || Cmax. In

the same paper, the authors show that, for R | pij ∈ {pj ,∞} | Cmax, it is not possible to

design a polynomial-time algorithm whose approximation ratio is better than 3/2 (unless

P=NP). Unfortunately, this result still holds for the special case where, for all jobs j ∈ J ,

we have that |M(j)| = 2 (see [16]). It remains an open problem do determine what,

exactly, is the best approximation ratio we can get.

Special instances and goal overview. Despite the negative results mentioned above,

there is a PTAS(3) for an interesting special instance of the problem, in which we have

nested machine sets (see [29]). In this special case (first considered by Glass and Kellerer

(1)pij ∈ {pj ,∞} handles the fact that jobs can only be scheduled in specific machine sets
(2)For consistency, we will use the same notation introduced in [29] and use the term “machine” in place

of “processor”
(3)See section 1.3 for an explanation of this term.

32

Chapter 4. 4.1. The problem

[18]), we have that, for any two jobs i, j ∈ J :

either M(i) ⊆M(j) , M(i) ⊇M(j) or M(i) ∩M(j) = ∅.

As mentioned in [29], an application of this special recursive structure of the machine

sets appears in the “drying stage of flour mills in the United Kingdom” (see [19]). This

property of the machine sets is similar to the one in laminar instances (see section 1.4.2.1)

of the non-preemptive speed scaling problem (S | rj , dj | E). As indicated in the beginning

of this chapter, Huang and Ott explored this similarity, to design a QPTAS for laminar

instances in the non-preemptive speed scaling problem [22].

With the goal of further exploiting the resemblance of both problems, I explored the

idea of designing an exact algorithm for R | pij ∈ {pj ,∞} | Cmax using nested machine

sets, which improves the running time for instances that are restricted by the number of

different job sizes. This chapter presents an exact algorithm for the case that pj ∈ {1, 2}
(for all jobs j ∈ J) and it gives an elaborate proof of correctness. For clarity and ease of

understand, we consider first a special case of nested machine sets, in which, for any two

jobs i, j ∈ J :

either M(i) ⊆M(j) or M(i) ⊇M(j).

In this special case (first considered by Hwang, Chang and Lee [23]), we say that ma-

chine sets M(j) are totally ordered by inclusion. As in the case that machine sets are

nested, it is easy to see a resemblance to purely laminar instances on the non-preemptive

speed scaling problem. This special structure of the machine sets is, by itself, of sci-

entific interest: as stated in [29], one of its possible applications is the assignment of

computer programs (which require some amount of memory) to processors that have a

limited memory capacity. Naturally, a job j can be assigned to any processor that can

schedule a “lighter” job i, and thus,M(i) ⊆M(j). Generalisation to nested machine sets

is accomplished in section 4.3.

4.1.1 Further notation

In order to simplify the following definitions, consider that all sets M(j) for all jobs j in

J are elements of a family F of machines sets such that:

F1 ⊆ F2 ⊆ . . . ⊆ F|F |.

33

4.1. The problem Chapter 4.

Definition 5 (Ranking of jobs). The rank of a job j increases with the size ofM(j):

rank : J → N
rank(j) 7→ k, if M(j) = Fk.

Similarly, we define below the ranking of a machine in M . For simplicity, we will use

the same function operator rank, used for jobs.

Definition 6 (Ranking of machines). The rank of a machine m is formally defined

as:

rank : M → N
rank(m) 7→ k, if M′(m) = Fk,

where M′(m) = argmin
f∈F
{|f | : m ∈ f}.

A schedule S is a function S : M → P(J), where P(J) is the power set of J . Sm

denotes the set of jobs scheduled in machine m.

The makespan of a machine m under a schedule S is given by:

γS(m) =
∑
j∈Sm

pj .

If we can derive the schedule S from the context we simply denote the makespan by

γ(m).

The quality of a schedule is given by its maximum makespan:

Γ(S) = max
m∈M

{γS(m)}.

Finally, let jobs(S) denote the set of jobs scheduled in S.

Given the amount of symbols and operators, a summary of the overall notation is given

in table 4.1.

34

Chapter 4. 4.2. The solution

Symbol / operator Meaning

M set of machines
J set of jobs
F set of families of machines

M(j) ∈ F machines where j can be scheduled
M′(m) ∈ F smallest set element of F that contains m

pj size (processing time) of job j
rank(j) rank of job j

rank(m) rank of machine m
Sm set of jobs scheduled in machine m under a schedule S

γS(m) makespan of machine m under a schedule S
Γ(S) maximum makespan in schedule S

jobs(S) set of jobs scheduled in S

Table 4.1: Summary of the notation introduced in section 4.1.

4.2 The solution

The algorithm described in this section follows an almost greedy strategy: it schedules jobs

in a specific order, but it might need to re-assign previously scheduled jobs to different

machines. It starts by initializing a schedule where no job is scheduled. The scheduling

order of the jobs is given by the non-decreasing order of their ranks (breaking ties arbi-

trarily) and we schedule one job k at a time. If k has size 1 or if we can schedule k without

increasing the maximum makespan, then we schedule it on any machine m ∈ M(k) of

minimum makespan. Otherwise, we construct a schedule for each possible assignment of

k, by re-scheduling previously assigned jobs. From this set of schedules, we keep the best

one (the one that has less maximum makespan), under which we schedule the next job

and repeat the whole process until all jobs were scheduled.

A summary of the whole algorithm is given below. The schedule being constructed is

represented by S and the term “unschedule” is used to denote the removal of a job from

the set of scheduled jobs of some machine.

35

4.2. The solution Chapter 4.

Algorithm A

1. Let S be an empty schedule

2. WHILE there are unscheduled jobs, DO

(a) Pick any unscheduled job k of minimum rank

(b) Pick any machine m ∈M(k) of minimum rank

(c) IF pk = 1 or γ(m) + pk ≤ Γ(S), THEN

i. Schedule, under S, job k in machine m

(d) ELSE

i. Snew ← arg min
i∈M(k)

{ Γ(Re-schedule(S, k, i)) }

ii. S ← Snew

3. RETURN S

The obvious reason for considering jobs in non-decreasing order of their ranks is the

benefit that comes from, successively, handling larger machine sets M(k): we consider

the more “restricted” jobs first, i.e., the jobs that provide less freedom in the scheduling

choice.

We now give the details on how to build the schedules in step 2.(d) of alg. A. As

we can see, this is done according to a function Re-schedule that receives the following

parameters:

• the current schedule S

• a machine i

• a job k

This routine is called several times, once for each possible value of i ∈M(k). It begins

by scheduling job k on machine i and removing as many jobs of size 1 as necessary in

order to prevent the increase of i’s makespan. We denote the set of these removed jobs by

T . Details of its computation are given below.

36

Chapter 4. 4.2. The solution

Procedure Compute T

1. Let T ← {}

2. Let γ′ be i’s makespan before scheduling job k on it

3. WHILE γ(i) > γ′ and i has jobs of size 1, DO

(a) Let j be any job of size 1 scheduled in i

(b) Unschedule j from machine i

(c) T ← T ∪ {j}

After, the function determines the set T ∗ of the jobs of maximum possible rank that

can be obtained by successively exchanging one job from T with another one from the set

of scheduled jobs (in some machine). This exchange implies one job from T to be scheduled

in the machine where we took the other exchanged job. Note that such exchange is only

possible if the job coming from T is allowed to be scheduled on the desired machine.

Naturally, we only trade jobs if the minimum rank in T increases.

There are many ways to compute T ∗, one of them is given below.

Procedure Compute T ∗

(Compute T)

1. Let T ∗ ← {}

2. Let M ′ ←M(k)

3. WHILE M ′ 6= ∅ and T 6= ∅, DO

(a) Remove any machine m′ of minimum rank from M ′

(b) Move every job j from T to T ∗, if m′ /∈M(j)

(c) Update T

4. T ∗ ← T ∗ ∪ T

Update T is the routine responsible for the job exchange mentioned above, in the

sense that T gets the maximum ranked jobs of the set T ∪{jobs of size 1 scheduled in m′}.
Moreover, since we are exchanging jobs, we make sure that T doesn’t change its size.

Following is a possible implementation of this step:

37

4.2. The solution Chapter 4.

Procedure Update T

1. Let Tnew ← {} and R← T ∪ {jobs of size 1 scheduled in m′}

2. REPEAT |T | times:

(a) Let r be any job of maximum rank of R

(b) Move r from R to Tnew

3. Schedule all jobs T \ Tnew in m′

4. Unschedule all jobs Tnew \ T from m′

5. T ← Tnew

Steps 3. and 4. ensure us that we do all the re-schedules required to update T .

Finally, the routine Re-schedule (re)schedules every job in T ∗ by following the same

strategy used in the main algorithm: sequentially assigning jobs of non-decreasing rank to

machines of minimum makespan. Since all jobs in T ∗ have size 1, we know that we won’t

need to call Re-schedule for this task.

An overview of the whole routine is presented below and illustrated in fig. 4.1.

Function Re-schedule

Input: schedule S, job k, machine i
Output: schedule S (modified)

1. Update S by scheduling job k on machine i

2. Compute T

3. Compute T ∗

4. Update S by scheduling all jobs of T ∗ using the strategy of the main algorithm

5. RETURN S

Observe that steps 2. and 3. make implicit changes in schedule S. See above their

implementations for details.

38

C
h
a
p
t
e
r
4
.

4.2.
T
h
e
solu

tion

(a) Initial schedule for some of the machines in M , conveniently ordered by increasing rank.

(b) Step 2. (c) Step 3. (d) Step 4.

Figure 4.1: Illustration of the routine Re-schedule for job k.

39

4.2. The solution Chapter 4.

Note. The reader might think: since we only re-schedule jobs of size 1, why not first

schedule all jobs of size 2 in the same order and, only then, schedule jobs of size 1?

A simple counter-example of the optimality of this strategy is illustrated in fig. 4.2.

Moreover, the greedy strategy of successively scheduling every job of non-decreasing

rank in machines of minimum makespan does not work as well, see fig. 4.3. The

routine Re-schedule is needed in this case.

Figure 4.2: Counter-example for the optimality of the strategy of scheduling all jobs of size 2
before the jobs of size 1 – right schedule. On the left we can see the optimal solution. We assume
that M(1) = M(2) = M(3) = {M1} and that M(4) = M(5) = {M1,M2}. Red jobs have size 2
and black jobs have size 1.

Figure 4.3: Counter-example for the optimality of the strategy of scheduling all jobs by increasing
order of their ranks (no matter their sizes) – right schedule. On the left we can see the optimal
solution. We assume thatM(1) =M(2) =M(3) = {M1,M2} and that jobs are considered in the
order given by their identification number. Red jobs have size 2 and black jobs have size 1.

40

Chapter 4. 4.2. The solution

4.2.1 Correctness of algorithm A

We begin by confirming the termination of the algorithm.

Claim 1. Algorithm A terminates after |J | iterations of its main loop.

Proof. In each iteration of the main loop in alg. A, exactly one new job is scheduled.

Since we have |J | jobs in total, the algorithm stops after |J | iterations.

Now, we demonstrate the correctness of A with a proof by induction, assuming, for

now, that its inductive step holds.

Theorem 3. Algorithm A builds an optimal schedule to problem R | pij ∈ {pj ,∞}, pj ∈
{1, 2} | Cmax using ordered machine sets.

Proof. We show that the algorithm is optimal by proving by induction on i that the

i+ 1th iteration of the algorithm produces an optimal schedule. For the correctness of the

inductive step it is enough to show that both steps 2.(c) and 2.(d) of the algorithm are

correct, i.e., that both build an optimal schedule for all jobs picked up so far. Since this

task is rather complex, it is split up into two parts that are postponed to sections 4.2.1.1

and 4.2.1.2, respectively. Thus, we assume, for now, that the inductive step is correct.

Claim 1 ensures us that the algorithm will eventually stop, so it remains to show that

the base case for the proof is correct as well, i.e., when i = 0. This corresponds to the

moment before the first job is scheduled, in which the schedule is empty. In other words,

its maximum makespan is zero, which is, necessarily, optimal.

4.2.1.1 Correctness of A’s step 2.(c)

We begin by showing that the following lemma holds.

Lemma 3. Let S′ be an optimal schedule of jobs J ′ and S a schedule of jobs J ′ ∪ {j}. If

Γ(S′) = Γ(S), then S is also optimal.

Proof. We prove by contradiction. If S is not optimal, then there is a schedule S∗ with

has even less maximum makespan. But, if we remove job j from S∗, we end up with a

schedule for the same set of jobs J ′ that is better than S′, a contradiction.

We proceed by introducing another lemma that will be useful afterwards.

41

4.2. The solution Chapter 4.

Lemma 4. Let S′ be a schedule of jobs J ′ over a set of machines M ′. If, for every two

machines i, j in M ′, we have that |γ(i)− γ(j)| ≤ 1, then S′ is an optimal schedule of jobs

J ′. The converse is not true.

Proof. It is easy to see that, if preemption is not allowed, the maximum makespan of any

schedule is always lower bounded by:

Γ(Ŝ) ≥ LB(Ĵ , M̂) :=

⌈∑
j∈Ĵ pj

|M̂ |

⌉
,

for any schedule Ŝ of jobs Ĵ in machines M̂ .

Clearly, if the premise holds, then Γ(S′) = LB(J ′,M ′), which makes S′ an optimal

schedule of jobs J ′ over the set of machines M ′.

Finally, we are able to prove the correctness of step 2.(c). As in algorithm A, we denote

by k the job that we are trying to schedule on each iteration.

Theorem 4. Step 2.(c) of algorithm A builds an optimal schedule S for job k and all the

previously scheduled jobs.

Proof. Let us assume that, in the end of this step, the maximum makespan increased. If

it didn’t, then, by lemma 3, S is optimal. Observe that step 2.(c) is only executed when

(i) job k has size 1 or (ii) when it is possible to directly schedule k without increasing

the maximum makespan. Hence, it must be the case that only the former condition (i)

holds, given the initial assumption. What’s more, all machines in M(k) have the same

(maximum) makespan. Thus, whatever machine is chosen by the algorithm to schedule k,

will be an optimal choice. This follows directly from lemma 4.

4.2.1.2 Correctness of A’s step 2.(d)

In this case, the algorithm finds an optimal schedule for job k (the one we are trying to

schedule on the current iteration of the algorithm), by calling the routine Re-schedule

for every machine allowed to schedule k. In order to prove the correctness of this step,

we need to make a substantial assumption: there is a solution for scheduling k and all

previously assigned jobs that does not require re-scheduling any job of size 2. This is

formalised in the theorem below (recall from section 4.1.1 that Sx denotes the set of jobs

scheduled in machine x ∈M , under schedule S).

Theorem 5. Given an optimal schedule S′ of jobs J ′, there always exists an optimal

schedule S of the jobs J ′∪{k} (with rank(k) ≥ maxj∈J ′{rank(j)}) that does not re-schedule

jobs of size 2 in S′. That is, for all jobs j ∈ J ′:

42

Chapter 4. 4.2. The solution

j ∈ S′y =⇒ j ∈ Sy, if pj = 2

Its proof is delayed to section 4.2.3, given its complexity. For now, let us assume that

the theorem holds. For simplicity, we will adopt the same notation introduced in the

theorem’s statement, i.e., S represents the optimal schedule after assigning job k (which

is the job picked by the alg. in the current iteration) and S′ is the schedule built by the

algorithm in the previous iteration. The jobs scheduled in S′ and S are, respectively, given

by J ′ and J ′∪{k}. Consider, also, that k was scheduled in machine m under the schedule

S.

We want to show, by contradiction, that S is optimal. To that extent, assume, for

the rest of the proof, that S isn’t optimal, but some schedule S∗ is. Given theorem 5, we

can presume that S∗ has the same schedule for jobs of size 2 as the one in S′. Moreover,

consider that Γ(S′) < Γ(S), or otherwise, we can finish this proof by applying lemma 3

(under section 4.2.1.1).

Let us partition the set of machinesM(k) into three subsets M1, M2 and M3 according

to the requirements specified in table 4.2. For future reference, whenever an expression

similar to “job is scheduled in Mi” is used, it naturally means (in a handier way) that the

job is scheduled in some machine of Mi.

M1 Γ(S)− γS(x) = 0, for all x in M1

M2 Γ(S)− γS(x) = 1, for all x in M2

M3 Γ(S)− γS(x) > 1, for all x in M3

Table 4.2: Partition of the machines set M(k)

Clearly, |M1| > 0, since there must be at least one machine whose makespan is max-

imum. In addition, let us consider that |M3| > 0, or otherwise S would be an optimal

schedule for jobs J ′ ∪ {k} over the set of machines M(k) (lemma 4).

Intuitively, we can think of S∗ as a more balanced version of the schedule S, i.e., with

less discrepancy on the makespans of the machines ofM(k). In fact, it is easy to see that

the amount of “work” scheduled in all machines of M3 should be bigger under schedule

S∗, compared to S (see fig. 4.4).

In this context, we are going to find contradictions while attempting to transform

S into S∗. This transformation is, certainly, possible if we simply re-schedule jobs on

S. Besides, we know that at least one job scheduled (under S) in M1 or M2 must be

transferred over to M3, otherwise S is optimal. Figure 4.4 illustrates this point. In fact,

the only way of decreasing the maximum makespan of S is by removing at least one job

from a machine of maximum makespan and making successive job exchanges until we get

a job that is sufficiently ranked to be transferred to M3. A formal explanation of this idea

follows (definition 7).

43

4.2. The solution Chapter 4.

Figure 4.4: Partition of the set of machines M(k) (into M1, M2 and M3) according to their
makespan in a schedule S. The red dashed line indicates the maximum possible makespan of an
optimal schedule S∗, assuming that schedule S isn’t optimal. Clearly, some jobs scheduled (under
S) in M1 or M2 must be re-scheduled to M3, in order to reduce the maximum makespan.

Definition 7 (Re-schedule sequence). A re-schedule sequence (πM , πJ , l) is a series of

l feasible re-schedules defined by a permutation πM : {1, . . . , l+ 1} →M of machines

and a permutation πJ : {1, . . . , l} → J of jobs such that job πJ(i) is re-scheduled from

machine πM (i) to machine πM (i + 1), for all 1 ≤ i ≤ l, and as long as πM (i + 1) ∈
M(πJ(i)).

The idea mentioned above becomes easier to grasp now. An illustration of a re-schedule

sequence is given in fig. 4.5.

Figure 4.5: Illustration of a re-schedule sequence (πM , πJ , l) (see definition 7). Nodes correspond
to machines πM (i) for all 1 ≤ i ≤ l+ 1 and arrows correspond to the re-schedule of a job πJ(i) for
all 1 ≤ i ≤ l.

Lemma 5. If S is not optimal we need at least one re-schedule sequence (πM , πJ , l) where

πM (1) ∈M1 and πM (l + 1) ∈M3 in order to be able to transform S into S∗.

44

Chapter 4. 4.2. The solution

Proof. It is easy to see that, in order to decrease the maximum makespan of S one needs

to remove jobs from M1, so consider all re-schedule sequences that start on a machine of

M1. If all of them end in a machine outside of M3, then the last re-scheduled job of those

sequences ends up in either M1 or M2, therefore not decreasing the maximum makespan.

Hence, there must be at least one re-schedule sequence (πM , πJ , l), such that πM (1) ∈M1

and πM (l + 1) ∈M3.

We now proceed by making another observation, regarding the jobs scheduled in ma-

chines of M1, under S. Recall that T ∗ is the set of jobs (computed in step 3. of the

function Re-schedule) of maximum possible rank that can be obtained by successively

exchanging jobs between T (1) and some machine.

Lemma 6. Every machine in M1 schedules (under S) at least one job from the set T ∗ if

T ∗ 6= ∅.

Proof. Recall our assumption (from the beginning of this section) that Γ(S′) < Γ(S),

where S′ is the schedule built by the same algorithm in the previous iteration. This

implies that all machines in M1 increased their makespan in schedule S. According to the

algorithm, a machine only increases its makespan by either:

(i) scheduling a job from T ∗;

(ii) scheduling job k (of size 2) and not removing enough jobs of size 1 from the same

machine (i.e., when |T | < 2);

(iii) or by both (i) and (ii).

The second case (ii) is the only one that, potentially, contradicts the lemma statement.

However, we know that this case doesn’t hold for the machines of M1. If it did, we could

never decrease the makespan of these machines without re-scheduling jobs of size 2. But we

know that there is a schedule (e.g. S∗) where the same machines have a smaller makespan

and schedule the same jobs of size 2 (see theorem 5). Hence, by contradiction, case (ii)

doesn’t hold for the machines of M1 and, consequently, none of the possibilities mentioned

contradicts the lemma statement.

Having proved lemma 6, we move on to check that the set T ∗ is correctly computed

under algorithm A.

Lemma 7. For every job t ∈ T ∗, t has the highest rank over all jobs scheduled in the set

of machines M(t), under S.

(1)T is initially the set of jobs taken out from the machine where job k was scheduled.

45

4.2. The solution Chapter 4.

Proof. By contradiction, if there was a job t′ such that rank(t′) > rank(t) (for some job t

in T ∗) and t′ is scheduled in some machine x of M(t), then either:

(i) the algorithm failed to select the jobs of maximum rank in step 2.(a) of the routine

Update T ;

(ii) or: x /∈M(k), the set of machines covered by the procedure Compute T ∗.

Naturally, we assume that the algorithm runs as expected, so the first case never

happens. In the latter, we also have a contradiction, because its statement implies that

M(t) 6⊂ M(k), which we know it can’t be true: given the scheduling order of the jobs,

we have that rank(t) ≤ rank(k) and, by the definition of rank, this indicates thatM(t) ⊆
M(k).

Finally, we are in conditions of proving the correctness of step 2.(c).

Theorem 6. Step 2.(d) of algorithm A builds an optimal schedule for job k and all the

previously scheduled jobs.

Proof. Recall from the beginning of this section that we are assuming that the solution

built from alg. A, denoted by S, is not optimal and that we partitionM(k) into sets M1,

M2 and M3. Also, we are presuming that Γ(S′) < Γ(S).

Let R = (πM , πJ , l) be a re-schedule sequence equivalent to the one mentioned in

lemma 5, where: πM (1) ∈M1 and πM (l + 1) ∈M3.

The idea for proving that this theorem holds is to show that the very existence of R

leads to contradictions on the behaviour of algorithm A. To this extent, we distinguish

between two complementary cases. Let j∗ denote the highest ranked job scheduled in

πM (1). Then, either j∗ can be scheduled in πM (l + 1) (case 1) or not (case 2). By

combining lemmas 6 and 7, we know that j∗ ∈ T ∗, if T ∗ 6= ∅. We ignore the case of T ∗

being empty, because when that happens, it is easy to see that S must be optimal. If

T ∗ = ∅, then machine m (where we scheduled k), doesn’t have any jobs of size 1 and,

therefore, its makespan is the same in both S and S∗ (recall our assumption of S∗ and

theorem 5, in the beginning of this section). Thus, given that, besides scheduling k, no

other change was made to the optimal schedule S′ (the one built in the previous iteration

of the algorithm), it must be the case that S is optimal.

Below we can see the analysis made to each of the cases mentioned above, considering

that T ∗ 6= ∅.

46

Chapter 4. 4.2. The solution

Case 1. πM(l+ 1) ∈M(j∗) (T ∗ 6= ∅∅∅)

Clearly, j∗ was the last job assigned to πM (1). This follows from the fact that the

jobs in T ∗ are scheduled in non-decreasing order of their rank (step 4. of the routine

Re-schedule). But we know that, before the insertion of j∗, we had that:

γ(πM (1))− γ(πM (l + 1)) ≥ 1,

since πM (1) ∈ M1 and πM (l + 1) ∈ M3. Thus, we have a contradiction, because

πM (1) was the machine of minimum makespan incorrectly chosen by the algorithm to

schedule j∗. Therefore, it can never happen that πM (l + 1) ∈M(j∗).

Case 2. πM(l+ 1) /∈M(j∗) (T ∗ 6= ∅∅∅)

In this case, it is clear that, at some point in the successive re-schedules of R, we

traded a job by another one that has a rank greater than rank(j∗). In other words,

for some i ∈ {1, . . . , l}, we have that:

(i) rank(πJ(i)) > rank(j∗) and

(ii) rank(πJ(i′)) ≤ rank(j∗), for all 1 ≤ i′ < i.

If there was no such i, then R, as a feasible re-schedule sequence, wouldn’t be able

to send a job over to M3. See fig. 4.6 for an illustration.

Given (ii) and the fact that πM (i) ∈ M(πJ(i − 1)) (by definition of re-schedule

sequence – definition 7), we know that πM (i) ∈ M(j∗). Thus, there is a job (e.g.

πJ(i)), scheduled (under S) in a machine ofM(j∗) with a rank greater than rank(j∗).

This, clearly, contradicts lemma 7 (recall that j∗ ∈ T ∗). Hence, we cannot afford to

have that πM (l + 1) /∈M(j∗).

Therefore, we conclude that there can’t be a re-schedule sequence that transforms S

into the optimal schedule S∗ in which πM (1) ∈M1 and πM (l+ 1) ∈M3. As we have seen

with both cases above, that could only happen if S wasn’t built from algorithm A. On

the assumption that S isn’t optimal, this clearly contradicts lemma 5. Thus, we can infer

that S is indeed optimal.

47

4.2. The solution Chapter 4.

Figure 4.6: Illustration of case 2 from proof of theorem 6. The sequence of connected nodes
on the top denotes a re-schedule sequence (see definition 7) R = (πM , πJ , l) and j∗ is the highest
ranked job scheduled in πM (1). If πM (l + 1) /∈ M(j∗), then, at some point in R (red line), we
must trade off some job by one whose rank is bigger than rank(j∗) (in this case, πJ(i)).

4.2.2 Complexity

Time complexity. We already know, by claim 1, that alg. A terminates in |J | iterations.

In each iteration of the algorithm, we spend, in the worst case, O(m2) time. This happens

when we need to schedule a job of size 2 and call the routine Re-schedule. In this case,

we try to schedule the new job k in every allowed machine (at most m times) and, for

each attempt, we loop again over the set of machines under the procedure Compute T ∗.

Each iteration of this loop can be easily done in O(1) time, if we use sorted data structures

for the sets manipulated in the routine Update T (1). The reason is that we only insert

(or remove) elements of maximum value for each set, including the ones responsible for

scheduling jobs. Moreover, only a constant number of operations is done, since |T | = O(1).

The remaining steps of the function Re-schedule can, clearly, be done in O(m) time,

which doesn’t increase (asymptotically) the final time complexity.

However, it takes O(n log n) to sort the sets of jobs and machines by their rank (as-

suming n ≥ m). Hence, the overall time complexity is:

O(n(log n+m2))

(1)The sets are: T , R, Tnew and Si for scheduling (removing) jobs in (from) machine i

48

Chapter 4. 4.2. The solution

Space complexity. The algorithm requires O(n) of extra space(1): O(n) for sets Sm for

all m ∈M and O(1) for T and all auxiliary variables.

4.2.3 Proof of theorem 5

Theorem 5. Given an optimal schedule S′ of jobs J ′, there always exists an optimal

schedule S of the jobs J ′∪{k} (with rank(k) ≥ maxj∈J ′{rank(j)}) that does not re-schedule

jobs of size 2 in S′. That is, for all jobs j ∈ J ′:

j ∈ S′y =⇒ j ∈ Sy, if pj = 2

Recall from section 4.1.1 that Sx denotes the set of jobs scheduled under machine

x ∈M .

Unfortunately, the proof of this theorem is quite complex. Its argument relies on

a transformation between schedules, so we start by defining below a mechanism that

accomplishes this.

Definition 8 (Re-schedule graph). A re-schedule graph is a data structure that holds

the necessary information to convert one schedule into another one that includes one

additional job. More specifically, a re-schedule graph of a schedule S is a directed

graph where each node corresponds to a machine in S and each arc (a, b)j to the

“re-scheduling” of job j from machine a to b. Every arc in the graph as a colour: red,

if the corresponding job has size 2, or black, otherwise. The scheduling of the new job

k in a machine m is given by an additional node (that we will denote by node α) and

an arc (α,m)k.

Formally, a re-schedule graph is a tuple G = (V,A, k,m, S), where:

S is a feasible schedule

A = {(a, b)j | j ∈ Sa and b ∈M(j)} ∪ {(α,m)k}

V = {all nodes with an incoming/outgoing arc in A} ∪ {α}

colour((a, b)j) =

red, if pj = 2

black, otherwise.

Let A(G) be the schedule after the activation of the re-schedule graph G. Activating a

re-schedule graph corresponds to applying all re-schedules given by the arcs of the graph.

Note that A(G) is always a feasible schedule by the above definition. If A(G) is optimal

(regarding its scheduled jobs), then we say that G is an optimal re-schedule graph.

(1)We ignore the input sets J and M as well.

49

4.2. The solution Chapter 4.

The idea of this proof is to transform any optimal re-schedule graph into one that

doesn’t re-schedule jobs of size 2. In other words, we want a graph whose only red arc is

the one corresponding to job k. To make things easy, we start by transforming the original

(unrestricted) graph into a simplified version of itself (see definition 11). Only then, we

are in a good position to design a strategy for the final transformation.

Following are some basic definitions used throughout the section.

Definition 9 (Machine increment). The increment of a machine is the increase (or

decrease) in the makespan of that machine after activating a re-schedule graph for a

given schedule. Formally:

IG(m) = γA(G)(m)− γS(m)

corresponds to the increment of a machine m according to a re-schedule graph G

applied to a schedule S. If G can be derived from its context, we simply denote the

increment by I(m).

Definition 10 (Types of paths). Let us denote a path in a graph by i →∗ j, where

i and j are, respectively, the start and finishing nodes in that path. Additionally, we

allow paths to be empty, that is, when i = j. A path denoted by i→+ j is, necessarily,

non-empty.

Let P = i →∗ j be a path in a re-schedule graph G, in which: (i) all arcs are

black, (ii) node i has at least one incoming red arc and (iii) I(j) = 1. We say that P

is of type:

• A, if i has at least 2 outgoing black arcs.

• B, if P is not of type A and if I(i) > 0.

• C, if P is not of type A and if I(i) < 0.

An example illustrating each path type is given in fig. 4.7.

We are, now, able to introduce the kind of graph we would like to have after the first

transformation mentioned above.

50

Chapter 4. 4.2. The solution

i j

=1

(a) Type A

i j

> 0 =1

(b) Type B

i j

< 0 =1

(c) Type C

Figure 4.7: Illustration of the three different types of paths in a re-schedule graph (see defini-
tion 10). Below each node, is its increment. For simplicity, the arcs that are not relevant were not
drawn.

Definition 11 (Simplified graph). A simplified graph G is a re-schedule graph with

the following properties:

1. node α is the only source node in G;

2. G does not have unicoloured cycles, i.e., cycles whose arcs have all the same

colour;

3. G does not have any path of type C.

The following claim will be useful for proving the upcoming lemma 8.

Claim 2. Let G and G′ be two re-schedule graphs of the same optimal schedule S. If, for

every machine m in S, we have that either:

(i) IG(m) ≤ IG′(m), or

(ii) IG(m) ≤ 0,

then

Γ(A(G)) ≤ Γ(A(G′)).

Proof. Suppose Γ(A(G)) > Γ(A(G′)) and at at least one of the conditions hold. Let x be

one machine in A(G) with the maximum makespan. We know that condition (i) does not

hold for x and, thus, (ii) must hold. This means that:

51

4.2. The solution Chapter 4.

γA(G′)(x) < γA(G)(x) ≤ γS(x)

=⇒ Γ(A(G′)) < Γ(A(G)) ≤ γS(x) ≤ Γ(S)

This contradicts the optimality of S: since Γ(A(G′)) < Γ(S), removing the added

job in A(G′) would result in a schedule better than S. Hence, it must be the case that

Γ(A(G)) ≤ Γ(A(G′)).

Lemma 8. Given an optimal schedule S′ of jobs J ′, there always exists a simplified graph

whose activation transforms it into an optimal schedule S of the jobs J ′ ∪ {k}.

Proof. It is easy to see that any re-schedule graph of a schedule S′ can build S: for every

job i ∈ jobs(S′), if i ∈ S′a and i ∈ Sb (with a 6= b), add an arc (a, b)i to the (initially

empty) graph. Finally, if j ∈ Sm, add an arc (α,m)j and all the necessary nodes. Let G

denote any such graph.

The proof will consist one gradually changing G to meet every property of a simplified

graph, separately:

• Property 1. While there is a node i 6= α that is a source in G, remove it from the

graph along with its outgoing arcs. Since i doesn’t have any incoming arcs, its increment

becomes null. When the only source node of G is m, we can stop.

• Property 2. While there are unicoloured cycles in G, choose any one of them and

remove all its arcs from G. If the graph is left with disconnected nodes, remove them

as well. It is easy to see that, after each of these cycles removals, the increments of all

machines in G don’t change. To make sure property 1 is satisfied, repeat the previous step

again.

• Property 3. While there exists a path P = s→∗ t of type C, simply remove all arcs of

P from G. If G is left with disconnected nodes, remove them as well. It is easy to see that,

after removing the arcs, the only node in P that increases its increment is s. However,

given the definition of a type C path, I(s) < 0 before the arcs removal. This means we

can afford to remove at least 1 black outgoing arc of s and keep its increment non-positive.

After every transformation we are left with a simplified graph G that remains feasible,

since we only removed arcs from a previous feasible graph. What’s more, the increments

that changed, remained non-positive in all transformations. Therefore, the schedule pro-

duced by G is still optimal by claim 2 (using G′ as the graph before all transformations).

An illustration of this transformation process is given in fig. 4.8.

52

Chapter 4. 4.2. The solution

α A

B C D E

F

G

H IJ

P1

P2

P3

(a)

α A

B C D E

F

G

H IJ

(b)

Figure 4.8: Example of a transformation of an unrestricted graph (a) into a simplified one (b).
Notice how the graph on the top is violating the three properties inherent to simplified graphs (see
definition 11).

Lemma 9. Given a simplified graph G = (V,A, k,m, S), all nodes with an increment of

1 are the finishing nodes of a path in G that has either type A or B.

Proof. Let j ∈ V be a node with I(j) = 1. It is easy to see that, if j doesn’t have any black

incoming arcs, it must have at least one black outgoing arc. In this case, j is the finishing

node of an empty path of type B, which confirms the validity of the lemma. So, from now

on, consider that j has at least one incoming black arc. Since there are no unicoloured

cycles in G, there always exists a path P finishing on j that has at least one red arc. If no

such path existed, then the source of G would only have black outgoing arcs. Clearly, this

isn’t the case because the definition of a simplified graph says that there exists a single

source node α that only has one red outgoing arc. Hence, let i be the last node in P that

has a red incoming arc. Since G doesn’t have paths of type C, one of the following cases

must hold:

53

4.2. The solution Chapter 4.

(1) I(i) > 0;

(2) I(i) = 0 and i has a least two black outgoing arcs;

(3) I(i) = 0 and i has at most one black outgoing arc.

It is easy to see that in the first and second cases, we have a path i→∗ j of either type

A or B. This is enough to show that the lemma holds for this cases, so we continue the

proof by considering only the last situation.

We can, actually, even make a stronger claim in (3): “I(i) = 0 and i has exactly one

black outgoing arc”. This follows from the fact the path i→∗ j only has black arcs. Based

on this, it is easy to see that i must have a black incoming arc. Thus, let’s assume, by

induction, that there is a path of either type A or B from some node i∗ to i (assuming

that we, temporarily, remove the black arc leaving i). By joining both paths, we get a

path i∗ →∗ j of either type A or B and, consequently, we have proof that the lemma holds

(this applies to all nodes j ∈ V such that I(j) = 1). The base cases for this induction on

i are precisely (1) and (2) – see above. Given the topology of G, we know that node m

will always ensure by default that one of the base cases holds. Even if I(m) = 0, m must

have at least two black outgoing arcs, because it only has one red incoming arc (from node

α).

Finally, we are ready to prove theorem 5.

Theorem 5. Given an optimal schedule S′ of jobs J ′, there always exists an optimal

schedule S of the jobs J ′∪{k} (with rank(k) ≥ maxj∈J ′{rank(j)}) that does not re-schedule

jobs of size 2 in S′. That is, for all jobs j ∈ J ′:

j ∈ S′y =⇒ j ∈ Sy, if pj = 2

Proof. Let G = (V,A, k, m̂, S′) be any optimal re-schedule graph that is able to construct

S. We will prove that the theorem holds by transforming G into a new re-schedule graph

G∗ that doesn’t have any red arcs, except the one leaving node α.

We can assume, given lemma 8, that G is a simplified graph. In addition, we consider

that for every node i ∈ V we have that I(i) ≤ 1. If not, we simply drop all re-schedules

of G and directly schedule job k in a machine v such that I(v) > 1. The resulting graph

G∗ = ({α, v}, {(α, v)k)}, k, v, S′) still produces an optimal and feasible schedule, because

rank(k) ≥ rank(i), ∀i ∈ V .

Since pk = 2, there must exist at least two distinct nodes i, j in V such that I(i) =

I(j) = 1. By lemma 9, we know that there are two paths Pi = m→∗ i and Pj = m′ →∗ j
of types A or B. These paths are, necessarily, different, because i 6= j. Now, assume

w.l.o.g that rank(m) ≥ rank(m′). Since job k can be scheduled on any currently loaded

machine, let’s give it to m and forget all re-schedules of G.

54

Chapter 4. 4.2. The solution

If (i) Pi is of type A, we can re-schedule an extra job of size 1 from m to m′ and

keep the re-schedules given by paths Pi and Pj . Otherwise, (ii) if Pi is of type B, we

simply change the black outgoing arc of m to enter node m′ instead. Additionally, we

follow the re-schedules given by Pj . In both cases, we built a re-schedule graph where

no job of size 2 is re-scheduled and no machine changes its makespan (relatively to S′).

Furthermore, the solutions are feasible, because we only introduced one new feasible arc

(m,m′)v. Feasibility comes from the fact that rank(v) ≥ rank(m) ≥ rank(m′)).

It can be easily checked that the previous argument is still valid when m = m′ or when

at least one of the paths Pi or Pj are empty (see the example in fig. 4.10).

Formally, we define the resulting re-schedule graph as G∗ = (V ∗, A∗, k,m, S′), where:

V ∗ = nodes(Pi) ∪ nodes(Pj) ∪ {α} and

A∗ = arcs(Pj) ∪ {(α,m)k}

∪

arcs(Pi), if Pi is of type A

∅, otherwise.

∪

{(m,m′)v}, if m 6= m′

∅, otherwise.

In this representation, nodes(P) (arcs(P)) is the set of all nodes (arcs) in the path P .

The arc (m,m′)v is only added if m 6= m′, in order to avoid unnecessary loops. Job v is

the one whose corresponding arc a in G leaves m and a /∈ arcs(Pi).

In figures 4.9 and 4.10, we can see examples illustrating the argument for the proof of

theorem 5.

55

4.2. The solution Chapter 4.

α m′

x

y

z

m

j

i

+1

+1

α m′

x

y

z

m

j

i

+1

+1

Figure 4.9: Example of the construction of a re-schedule graph (on bottom) with only one red
arc, given the graph on the top. Nodes labelled +1 correspond to machines that increase their
makespan by 1 unit. We assume that rank(m) ≥ rank(m′). The technique used is described in the
proof of theorem 5.

α m x m′

+1 +1

= i = j

α m x m′

+1 +1

= i = j

Figure 4.10: Example of the construction of a re-schedule graph (on bottom) with only one red
arc, given the graph on the top. Nodes labelled +1 correspond to machines that increase their
makespan by 1 unit. We assume that rank(m) ≥ rank(m′). The technique used is described in the
proof of theorem 5. Note that, in this case, we have that m = i and m′ = j.

56

Chapter 4. 4.3. Generalizing to nested machine sets

4.3 Generalizing to nested machine sets

In this section we will try to extend the solution discussed in section 4.2 to a more general

case of the scheduling with job assignment restrictions problem (equivalently, R | pij ∈
{pj ,∞} | Cmax) introduced by Muratore, Schwarz and Woeginger [29] as mentioned in

section 4.1. Instead of assuming that the machine sets are ordered by inclusion, we will

consider the case where the machine sets M(j) are nested, i.e., for any two jobs i, j ∈ J :

either M(i) ∩M(j) = ∅, or

M(i) ⊆M(j), or

M(i) ⊇M(j).

Once again, notice the correspondence to the special case of the non-preemptive speed

scaling problem (S | rj , dj | E), when the job lifetimes form a laminar structure (see

section 1.4.2). Figure 1.3, on page 7, illustrates how this instance generalises the special

case of ordered machine sets. Notice, however, that the horizontal axis represents time in

the speed scaling setting, instead of machines.

4.3.1 Preliminaries

Note that the key to the solution of the problem with ordered machine sets is the following

strategy:

(S) For every two jobs i, j in J , such that M(i) ⊆ M(j), the

first attempt of scheduling i must be before the first attempt

of scheduling j (recall that there might be re-schedules).

Moreover, if pi = pj = 2 then i is guaranteed to be scheduled

before j (jobs of size 2 are never re-scheduled).

Intuitively, we should be able to apply a similar strategy in the case of nested ma-

chine sets, since its structure has also the potential for establishing such an order on the

jobs/machines. In the case of ordered machine sets, this ordering was easily accomplished

by the notion of ranking (of jobs and machines): recall that rank(j) grows with increasing

values of |M(j)| (see definition 5). However, when machine sets are nested, it might be

the case thatM(i)∩M(j) = ∅ for some jobs i and j. Hence, we can’t have a total order,

but only a partial one.

To that end, we will consider, from now on, that jobs and machines are elements of

posets.

57

4.3. Generalizing to nested machine sets Chapter 4.

Definition 12 (Poset). A poset, or partially ordered set, (P,≤) is a set P equipped

with a (non-strict) partial-order relation ≤, i.e., a binary relation that satisfies, for all

a, b and c in P the following properties:

• a ≤ a (reflexivity)

• if a ≤ b and b ≤ a then a = b (antisymmetry)

• if a ≤ b and b ≤ c then a ≤ c (transitivity)

Thus, let M• = (M,≤M) be the poset of all machines and J• = (J,≤J) be the poset

of all jobs, where the partial-order is defined as follows:

(for any two jobs i and j in J•)

i ≤J j ⇐⇒ M(i) ⊆M(j)

(for any two machines i and j in M•)

i ≤M j ⇐⇒ M′(i) ⊆M′(j)

Recall that M′(m) is the smallest set of machines (in F) that contains m (see sec-

tion 4.1.1).

For simplicity, we will use the operator ≤ for both jobs and machines. Its meaning can

be determined from the context. We say that a job i ∈ J• is greater than a job j ∈ J• if

and only if i ≤ j. Naturally, the same reasoning can be done about machines.

Definition 13 (Maximal and minimal elements). Let (P,≤) be a poset and P ′ ⊆ P .

A maximal (resp. minimal) element of P ′ is an element of P ′ that is not smaller

(resp. greater) than any other element of P ′.

4.3.2 The solution

This problem can be solved in the same manner as the problem where machine sets

M(j) are totally ordered by inclusion (see section 4.2). We also iterate over the set of

jobs, scheduling one of them in each iteration. But this time, we follow any topological

ordering associated with the job precedences, given by poset J•. This way, we can handle

subsequent minimal jobs of J and, therefore, keep strategy (S) – previously mentioned.

Note that there can be more than one possible topological orderings, but none of them

prevails over another. Once again, if the job being scheduled has size 1 or if it can be

scheduled in a machine without increasing the maximum makespan, then we schedule it

on any machine of minimum makespan. Otherwise, we need to call, again, the re-schedule

routine.

58

Chapter 4. 4.3. Generalizing to nested machine sets

Throughout the rest of this section, differences between the new algorithm A′ and the

previous one, A, will be highlighted in blue. Common statements remain expressed in

black.

Below, we can see that, in the main loop of the algorithm, we only take care of the

order along which jobs and machines are handled.

Algorithm A′

1. Let S be an empty schedule

2. Let J ′ ← J

3. WHILE J 6= ∅, DO

(a) Pick any minimal job k ∈ J ′

(b) Pick any minimal machine m ∈M(k)

(c) IF pk = 1 or γ(m) + pk ≤ Γ(S), THEN

i. Schedule, under S, job k in machine m

(d) ELSE

i. Snew ← arg min
i∈M(k)

{ Γ(Re-schedule’(S, k, i)) }

ii. S ← Snew

(e) J ′ ← J ′ \ {k}

4. RETURN S

Naturally, the routine responsible for re-scheduling jobs needs some modifications as

well, but the essence of the function is the same. Once more, it is called for every machine

i ∈M(k) and it starts by scheduling job k in machine i, from which it is removed a set T

of jobs. The method for determining this set doesn’t required any modifications.

59

4.3. Generalizing to nested machine sets Chapter 4.

Procedure Compute’ T

1. Let T ← {}

2. Let γ′ be i’s makespan before scheduling job k on it

3. WHILE γ(i) > γ′ and i has jobs of size 1, DO

(a) Let j be any job of size 1 scheduled in i

(b) Unschedule j from machine i

(c) T ← T ∪ {j}

We proceed by determining the set of jobs T ∗. By analogy with the previous alg. A,

this set contains the greatest possible jobs that can be obtained by successive job exchanges

(see previous section 4.2).

Procedure Compute’ T ∗

(Compute’ T)

1. Let T ∗ ← {}

2. Let M ′ ←M(k)

3. WHILE M ′ 6= ∅ and T 6= ∅, DO

(a) Remove any minimal machine m′ from M ′

(b) Move every job j from T to T ∗, if m′ /∈M(j)

(c) Update’ T

4. T ∗ ← T ∗ ∪ T

As we can see in the above procedure, no major change was done.

Obviously, it is also necessary to modify the routine Update T , so as to reflect the

precedence of jobs given by poset J•.

60

Chapter 4. 4.3. Generalizing to nested machine sets

Procedure Update’ T

1. Let Tnew ← {} and R← T ∪ {jobs of size 1 scheduled in m′}

2. REPEAT |T | times:

(a) Pick any maximal job r ∈ R

(b) Move r from R to Tnew

3. Schedule all jobs T \ Tnew in m′

4. Unschedule all jobs Tnew \ T from m′

5. T ← Tnew

Finally, we can collect all the updates made into the new Re-schedule’ function and

verify that indeed no major change is necessary. In fact, the overall workflow of this

routine is exactly the same as the one described in section 4.2.

Function Re-schedule’

Input: schedule S, job k, machine i
Output: schedule S (modified)

1. Update S by scheduling job k on machine i

2. Compute’ T

3. Compute’ T ∗

4. Update S by scheduling all jobs of T ∗ using the strategy of the main algorithm

5. RETURN S

Only local adjustments were carried out in order to account for the new precedence of

jobs and machines given by the posets J• and M•, respectively. Observe that also step

4. of Re-schedule’ needs to be adapted accordingly, i.e.: by sequentially assigning greater

jobs to machines of minimum makespan.

4.3.3 Correctness of algorithm A′

As it can be verified in the last section, the differences between algorithms A and A′

are only “superficial” ones. By that reason, showing correctness of A′ is straightforward.

In fact, it is almost just necessary to modify the proof of correctness of A by turning

expressions referring to “ranking” (of both jobs and machines) into equivalent ones suiting

the new precedence notion of jobs and machines.

61

4.3. Generalizing to nested machine sets Chapter 4.

Nevertheless, the rest of this section will revisit, step by step, the overall proof of

correctness of A and point out the adjustments that are necessary to generalise it.

Recall that we started off by showing that the algorithm terminates.

Claim 1′. Algorithm A′ terminates after |J | iterations of its main loop.

Proof. (Equivalent to the proof of claim 1 in section 4.2.1.)

Looking back, we based ourselves in a proof by induction on the ith iteration of the

algorithm. Naturally, we do the same for A′ and, once again, we skip the correctness of

the inductive step.

Theorem 3′. Algorithm A′ builds an optimal schedule to problem R | pij ∈ {pj ,∞}, pj ∈
{1, 2} | Cmax using nested machine sets.

Proof. (Equivalent to the proof of theorem 3, except that the inductive step is shown to

be correct by sections 4.3.3.1 and 4.3.3.2. These prove, respectively, that steps 3.(c) and

3.(d) build optimal schedules for all jobs considered so far.)

4.3.3.1 Correctness of A′’s step 3.(c)

As we can verify, the proof of correctness of the equivalent step in alg. A (see sec-

tion 4.2.1.1) doesn’t mention, in any part, ranks of jobs or machines. Thus, we can

directly reuse it for this case, with no need for adjustments. In that proof, we exploited

the fact that this step (or its corresponding step in alg. A) is only executed when job

k has size 1 or when it is possible to directly schedule k without changing the current

maximum makespan. For the latter case, we showed that the resulting schedule is optimal

in lemma 3. For the former, lemma 4 was used instead. Below, we can review both lemma

statements.

Lemma 3. Let S′ be an optimal schedule of jobs J ′ and S a schedule of jobs J ′ ∪ {j}. If

Γ(S′) = Γ(S), then S is also optimal.

Lemma 4. Let S′ be a schedule of jobs J ′ over a set of machines M ′. If, for every two

machines i, j in M ′, we have that |γ(i)− γ(j)| ≤ 1, then S′ is an optimal schedule of jobs

J ′. The converse is not true.

62

Chapter 4. 4.3. Generalizing to nested machine sets

4.3.3.2 Correctness of A′’s step 3.(d)

The proof of correctness of this step is a bit more complex (compared to step 3.(c)), but

it will also rely on the proof that the corresponding step in alg. A is correct. In total, we

used one theorem, one definition and three lemmas, before we could prove the correctness

of the step in theorem 6.

We began by assuming that: there is a solution for scheduling k that does not require

re-assigning jobs of size 2 to different machines, and keeps scheduled all the jobs considered

in previous iterations. Hence, we do the same now.

Theorem 5′. Given an optimal schedule S′ of jobs J ′, there always exists an optimal

schedule S of the jobs J ′ ∪ {k} (with k ≥ max J ′) that does not re-schedule jobs of size 2

in S′. That is, for all jobs j ∈ J ′:

j ∈ S′y =⇒ j ∈ Sy, if pj = 2

The proof for the above theorem is based on the proof of theorem 5, but a more detailed

explanation is given in section 4.3.4.

After, we assumed that the output solution of alg. A, denoted by S, isn’t optimal, but

some schedule S∗ is. The overall idea was to prove, by contradiction, the optimality of

S. To that end, we partitioned the set of machines M(k) into 3 subsets M1, M2 and M3

according to table 4.2. After, we formalised a mechanism for transforming S into S∗ (see

below) that would simplify the rest of the proof.

Definition 7 (Re-schedule sequence). A re-schedule sequence (πM , πJ , l) is a series of

l feasible re-schedules defined by a permutation πM : {1, . . . , l+ 1} →M of machines

and a permutation πJ : {1, . . . , l} → J of jobs such that job πJ(i) is re-scheduled from

machine πM (i) to machine πM (i + 1), for all 1 ≤ i ≤ l and as long as πM (i + 1) ∈
M(πJ(i)).

The upcoming lemmas would be the final step before concluding the proof with theo-

rem 6. Below, we can recall them. Except to the last one, all three lemmas can be proved

in exactly the same way as they were proved for ordered machine sets.

Lemma 5. If S is not optimal we need at least one re-schedule sequence (πM , πJ , l) where

πM (1) ∈M1 and πM (l + 1) ∈M3 in order to be able to transform S into S∗.

Proof. (See proof of lemma 5 on section 4.2.1.2.)

63

4.3. Generalizing to nested machine sets Chapter 4.

Lemma 6. Every machine in M1 schedules (under S) at least one job from the set T ∗ if

T ∗ 6= ∅.

Proof. (See proof of lemma 6 on section 4.2.1.2.)

Lemma 7′. For every job t ∈ T ∗, there is no other job scheduled in some machine of

M(t) that is greater than t.

Proof. In the original proof of lemma 7, we could argue that rank(t) ≤ rank(k) for all jobs

t ∈ T ∗, given that the machine sets are totally ordered. Unfortunately, we can no longer

use the same argument to sustain the analogous statement t ≤ k, for all jobs t ∈ T ∗.

Hence, we make the necessary adjustments in the proof.

Once again, if there was a job t′ such that t′ > t for some job t in T ∗ and t′ is scheduled

in some machine x of M(t), either:

(i) the algorithm failed to select the maximal jobs in step 2.(a) of the routine Up-

date’ T ;

(ii) or: x /∈M(k), the set of machines covered by the procedure Compute’ T ∗.

Assuming that the algorithm runs according to its description, only the latter case

(ii) might disproof the lemma. It is easy to see (from the description of the procedure

Compute’ T ∗) that all jobs in T ∗ were previously scheduled in some machine of M(k),

which implies that the machine sets associated to these jobs are nested inM(k). In other

words: M(t) ⊆M(k) for all jobs t in T ∗. However, if x /∈ M(k) (ii), then it must be the

case that M(t) 6⊂ M(k), a contradiction.

Note that the proof above is very similar to the original proof of lemma 7, but, for

ease of understanding and recall, the common parts of both proofs were repeated.

Finally, we were able to prove the correctness of step 2.(d) of alg. A by applying the

last lemmas in the proof of theorem 6. Thus, we adopt one last time the same strategy

for the case of nested machine sets.

Theorem 6′. Step 3.(d) of algorithm A builds an optimal schedule for job k and all the

previously scheduled jobs.

Proof. (Straightforward generalisation of the original proof of theorem 6: replace any

expression comparing jobs, or machines, by their rank into equivalent ones that use the

new partial-order relation defined by the posets J• and M•.)

64

Chapter 4. 4.3. Generalizing to nested machine sets

4.3.4 Proof of theorem 5′

Theorem 5′. Given an optimal schedule S′ of jobs J ′, there always exists an optimal

schedule S of the jobs J ′ ∪ {k} (with k ≥ max J ′) that does not re-schedule jobs of size 2

in S′. That is, for all jobs j ∈ J ′:

j ∈ S′y =⇒ j ∈ Sy, if pj = 2

Proof. The proof follows, trivially, from a generalisation of the proof of theorem 5, since

at no point of the demonstration we benefit explicitly from the fact that the machine sets

are ordered. Instead, we only take advantage of the fact that job k has the highest rank

and can, therefore, be assigned to any machine currently scheduling jobs. Moreover, we

only account for this fact in the end of section 4.2.3, on, precisely, the proof of theorem 5.

Nonetheless, we need to make a few adjustments so as to adapt the argument to nested

machine sets.

By looking at section 4.2.3, we can verify that, before the conclusive proof of theorem 5,

it is described (in a series of definitions and lemmas) a process for transforming any

schedule into an optimal one. This is accomplished by re-schedule graphs(1) that are,

gradually, modified until they satisfy a set of properties(2), which in turn, simplify its final

transformation into a re-schedule graph that does not re-schedule jobs of size 2(3).

In order to be able to re-use the proof of theorem 5, we need to make sure that job k

can be scheduled in any machine that is part of a suitable re-schedule graph. This way,

we have more freedom to manipulate the graph while satisfying the feasibility constraints.

Thus, let us update the definition of a simplified re-schedule graph.

Definition 11′ (Simplified graph). A simplified graph G = (V,A, k,m, S) is a re-

schedule graph with the following properties:

1. node α is the only source node in G;

2. G does not have unicoloured cycles, i.e., cycles whose arcs have the same colour;

3. G does not have any path of type C;

4. all machines of G are elements of M(k), i.e., V \ {α} ⊆ M(k).

The only change we made in the above definition was adding property 4, which is

implicitly present in all re-schedule graphs if the machine sets are ordered.

As a consequence of redefining simplified graphs, we need to also update the proof of

lemma 8.

(1)See definition 8.
(2)See definition 11 and lemma 8.
(3)See lemma 9 and theorem 5.

65

4.3. Generalizing to nested machine sets Chapter 4.

Lemma 8′. Given an optimal schedule S′ of jobs J ′, there always exists a simplified

graph whose activation transforms it into an optimal schedule S of the jobs J ′ ∪ {k}.

Proof. Let G be any re-schedule graph able to transform S′ into S. In the previous

version of this proof (for ordered machine sets), we can verify that such graph always

exists and can be modified to meet properties 1, 2 and 3. Given that these properties

are somewhat independent of each other, we can afford to change G and let it reflect

each property, individually.

• Property 4. Remove all nodes u in V such that u /∈ M(k). Moreover, remove

all incoming and outgoing arcs of u. Let G be the resulting graph.

Note that after this transformation, G still holds a feasible and optimal schedule.

The reason is that no new arc was added and G was, initially, feasible. Moreover, the

increments of all removed nodes remained null and no other node in G changed its

increment. Hence, G holds an optimal schedule by claim 2 (see section 4.2.3), using

G′ as the graph before all transformations. The reason why no other machine changed

its increment (besides the ones removed from G) is the fact that none of the removed

arcs has an endpoint in any of the machines ofM(k). The only way that such an arc

could exist, would be if we had, previously, scheduled a job j such that j > k (since

it must be the case that M(k) ⊂M(j)). But, this, clearly, never happens under the

policy followed by algorithm A′.

Having concluded the previous proof, we are now in a better position of generalising

theorem 5. As a matter of fact, all we need to do is change all expressions comparing jobs

(and machines) by their rank into equivalent expressions that use the new partial-order

associated to jobs (and machines). It can be easily verified that this adjustment does not

violate any feasibility constraint, given the new definition of simplified graphs.

66

Chapter 5

Conclusion

This thesis considered a variant of the speed scaling problem, in which processors aren’t

allowed to interrupt (and later resume) the execution of jobs. Although this setting is

much harder than the preemptive version (which is in P), the set of feasible solutions to

the former problem is significantly smaller.

The initial goal of this thesis was to improve the approximation ratio of the non-

preemptive speed scaling problem, using only combinatorial algorithms. Sadly, this task

turned out to be too difficult to achieve within the available time. Nevertheless, several

contributions were made to special instances of the problem. One of the main results

is a substantial reduction on the time complexity for the case that all jobs share equal

work volumes and only one processor is used to schedule them. This improvement derived

from a better analysis of the polynomial-time solutions given so far, which allowed us to

take full advantage of their potential. In addition, by a simple extension of one of these

solutions, it was possible to demonstrate that the problem remains in P when the number

of jobs of unrestricted work volumes is limited to any constant. Although straightforward,

this contribution is one step further to better understand the complexity class of the non-

preemptive speed scaling problem, whose general instance is known to be strongly NP-

hard, if using a single processor. The last major result was the design of an independent

algorithm that solves, optimally, a special instance of the problem scheduling with job

assignment restrictions [29]. An elaborate proof of correctness is also given in the same

chapter. Although for a special case (all jobs have a processing time of either one or two),

this algorithm is optimal and it improves the time complexity of the PTAS (see [29]) that

is able to solve instances with unrestricted processing times. Both approaches assume,

however, that jobs have nested assignment restrictions (see section 4.1). The reason for

considering a different scheduling problem is related to the connection between this and

the speed scaling problem, which was explored by Huang and Ott [22] to design a QPTAS

for laminar instances.

Besides the improvements mentioned in the last paragraph, two less significant con-

67

Chapter 5.

tributions (see section 3.3) were also made, with respect to other special instances of the

non-preemptive speed scaling problem. It is important to mention that both of them relied

on the well known polynomial-time algorithm given by Huang and Ott [22] for the case of

equal work volumes. One of the improvements consisted in decreasing the time complexity

when all jobs define a purely laminar structure. The other one considered extending this

result to the context of multiple processors and it showed that, if the number of processors

is a constant, the problem is still in P.

Further work. It is very likely that the strategy adopted in chapter 4 to solve a special

instance of the problem scheduling with job assignment restrictions can be generalised to

instances that include any two processing times (instead of only the values one and two).

Moreover, I believe that this method can be further extended to solve, in polynomial-

time, instances where the number of different processing times is a constant. Ultimately,

it could even give rise to an approximation algorithm that is able to handle unrestricted

processing times. It would be interesting to then compare the algorithm performance

and its approximation ratio with the current best ones. Unfortunately, due to lack of

time, none of these ideas was explored. For the same reason, the techniques used in the

same chapter weren’t further employed in the original speed scaling problem – goal that,

originally, motivated the study of a different scheduling problem.

68

Bibliography

[1] 2014 Key World Energy Statistics” (PDF). IEA. 2014. url: http://www.iea.org/

publications/freepublications/.

[2] Susanne Albers, Antonios Antoniadis, and Gero Greiner. “On multi-processor speed

scaling with migration: extended abstract”. In: SPAA 2011: Proceedings of the 23rd

Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose,

CA, USA, June 4-6, 2011 (Co-located with FCRC 2011). 2011, pp. 279–288. doi: 10.

1145/1989493.1989539. url: http://doi.acm.org/10.1145/1989493.1989539.

[3] Susanne Albers, Fabian Müller, and Swen Schmelzer. “Speed scaling on parallel

processors”. In: SPAA 2007: Proceedings of the 19th Annual ACM Symposium on

Parallelism in Algorithms and Architectures, San Diego, California, USA, June 9-

11, 2007. 2007, pp. 289–298. doi: 10.1145/1248377.1248424. url: http://doi.

acm.org/10.1145/1248377.1248424.

[4] Eric Angel, Evripidis Bampis, and Vincent Chau. “Throughput Maximization in the

Speed-Scaling Setting”. In: 31st International Symposium on Theoretical Aspects of

Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France.

2014, pp. 53–62. doi: 10.4230/LIPIcs.STACS.2014.53. url: http://dx.doi.org/

10.4230/LIPIcs.STACS.2014.53.

[5] Eric Angel et al. “Speed Scaling on Parallel Processors with Migration”. In: Euro-Par

2012 Parallel Processing - 18th International Conference, Euro-Par 2012, Rhodes

Island, Greece, August 27-31, 2012. Proceedings. 2012, pp. 128–140. doi: 10.1007/

978-3-642-32820-6_15. url: http://dx.doi.org/10.1007/978-3-642-32820-

6_15.

[6] Antonios Antoniadis and Chien-Chung Huang. “Non-preemptive Speed Scaling”. In:

Algorithm Theory - SWAT 2012 - 13th Scandinavian Symposium and Workshops,

Helsinki, Finland, July 4-6, 2012. Proceedings. 2012, pp. 249–260. doi: 10.1007/

978-3-642-31155-0_22. url: http://dx.doi.org/10.1007/978-3-642-31155-

0_22.

[7] Antonios Antoniadis, Chien-Chung Huang, and Sebastian Ott. “A Fully Polynomial-

Time Approximation Scheme for Speed Scaling with Sleep State”. In: Proceedings

of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

71

http://www.iea.org/publications/freepublications/
http://www.iea.org/publications/freepublications/
http://dx.doi.org/10.1145/1989493.1989539
http://dx.doi.org/10.1145/1989493.1989539
http://doi.acm.org/10.1145/1989493.1989539
http://dx.doi.org/10.1145/1248377.1248424
http://doi.acm.org/10.1145/1248377.1248424
http://doi.acm.org/10.1145/1248377.1248424
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.53
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.53
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.53
http://dx.doi.org/10.1007/978-3-642-32820-6_15
http://dx.doi.org/10.1007/978-3-642-32820-6_15
http://dx.doi.org/10.1007/978-3-642-32820-6_15
http://dx.doi.org/10.1007/978-3-642-32820-6_15
http://dx.doi.org/10.1007/978-3-642-31155-0_22
http://dx.doi.org/10.1007/978-3-642-31155-0_22
http://dx.doi.org/10.1007/978-3-642-31155-0_22
http://dx.doi.org/10.1007/978-3-642-31155-0_22

2015, San Diego, CA, USA, January 4-6, 2015. 2015, pp. 1102–1113. doi: 10.1137/

1.9781611973730.74. url: http://dx.doi.org/10.1137/1.9781611973730.74.

[8] Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli. “Green Scheduling, Flows

and Matchings”. In: Algorithms and Computation - 23rd International Symposium,

ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceedings. 2012, pp. 106–115.

doi: 10.1007/978-3-642-35261-4_14. url: http://dx.doi.org/10.1007/978-

3-642-35261-4_14.

[9] Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli. “Speed-Scaling with No

Preemptions”. In: Algorithms and Computation - 25th International Symposium,

ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings. 2014, pp. 259–269.

doi: 10.1007/978-3-319-13075-0_21. url: http://dx.doi.org/10.1007/978-

3-319-13075-0_21.

[10] Evripidis Bampis et al. “Energy Efficient Scheduling and Routing via Randomized

Rounding”. In: IARCS Annual Conference on Foundations of Software Technology

and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwa-

hati, India. 2013, pp. 449–460. doi: 10.4230/LIPIcs.FSTTCS.2013.449. url:

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.449.

[11] Evripidis Bampis et al. “From Preemptive to Non-preemptive Speed-Scaling Schedul-

ing”. In: Computing and Combinatorics, 19th International Conference, COCOON

2013, Hangzhou, China, June 21-23, 2013. Proceedings. 2013, pp. 134–146. doi:

10.1007/978-3-642-38768-5_14. url: http://dx.doi.org/10.1007/978-3-

642-38768-5_14.

[12] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. “Dynamic Speed Scaling to Manage

Energy and Temperature”. In: 45th Symposium on Foundations of Computer Science

(FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings. 2004, pp. 520–529. doi:

10.1109/FOCS.2004.24. url: http://doi.ieeecomputersociety.org/10.1109/

FOCS.2004.24.

[13] Brad D. Bingham and Mark R. Greenstreet. “Energy Optimal Scheduling on Mul-

tiprocessors with Migration”. In: IEEE International Symposium on Parallel and

Distributed Processing with Applications, ISPA 2008, Sydney, NSW, Australia, De-

cember 10-12, 2008. 2008, pp. 153–161. doi: 10.1109/ISPA.2008.128. url: http:

//dx.doi.org/10.1109/ISPA.2008.128.

[14] David M. Brooks et al. “Power-Aware Microarchitecture: Design and Modeling Chal-

lenges for Next-Generation Microprocessors”. In: IEEE Micro 20.6 (2000), pp. 26–

44. doi: 10.1109/40.888701. url: http://doi.ieeecomputersociety.org/10.

1109/40.888701.

http://dx.doi.org/10.1137/1.9781611973730.74
http://dx.doi.org/10.1137/1.9781611973730.74
http://dx.doi.org/10.1137/1.9781611973730.74
http://dx.doi.org/10.1007/978-3-642-35261-4_14
http://dx.doi.org/10.1007/978-3-642-35261-4_14
http://dx.doi.org/10.1007/978-3-642-35261-4_14
http://dx.doi.org/10.1007/978-3-319-13075-0_21
http://dx.doi.org/10.1007/978-3-319-13075-0_21
http://dx.doi.org/10.1007/978-3-319-13075-0_21
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.449
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.449
http://dx.doi.org/10.1007/978-3-642-38768-5_14
http://dx.doi.org/10.1007/978-3-642-38768-5_14
http://dx.doi.org/10.1007/978-3-642-38768-5_14
http://dx.doi.org/10.1109/FOCS.2004.24
http://doi.ieeecomputersociety.org/10.1109/FOCS.2004.24
http://doi.ieeecomputersociety.org/10.1109/FOCS.2004.24
http://dx.doi.org/10.1109/ISPA.2008.128
http://dx.doi.org/10.1109/ISPA.2008.128
http://dx.doi.org/10.1109/ISPA.2008.128
http://dx.doi.org/10.1109/40.888701
http://doi.ieeecomputersociety.org/10.1109/40.888701
http://doi.ieeecomputersociety.org/10.1109/40.888701

[15] Vincent Cohen-Addad et al. “Energy-Efficient Algorithms for Non-preemptive Speed-

Scaling”. In: Approximation and Online Algorithms - 12th International Workshop,

WAOA 2014, Wroc law, Poland, September 11-12, 2014, Revised Selected Papers.

2014, pp. 107–118. doi: 10.1007/978-3-319-18263-6_10. url: http://dx.doi.

org/10.1007/978-3-319-18263-6_10.

[16] Tomás Ebenlendr, Marek Krcál, and Jiri Sgall. “Graph balancing: a special case of

scheduling unrelated parallel machines”. In: Proceedings of the Nineteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, Cali-

fornia, USA, January 20-22, 2008. 2008, pp. 483–490. url: http://dl.acm.org/

citation.cfm?id=1347082.1347135.

[17] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979. isbn: 0-7167-1044-7.

[18] Celia A. Glass and Hans Kellerer. “Parallel machine scheduling with job assignment

restrictions”. In: Naval Research Logistics (NRL) 54.3 (2007), pp. 250–257. issn:

1520-6750. doi: 10.1002/nav.20202. url: http://dx.doi.org/10.1002/nav.

20202.

[19] Celia A. Glass and H. R. Mills. “Scheduling unit length jobs with parallel nested

machine processing set restrictions”. In: Computers & OR 33 (2006), pp. 620–638.

doi: 10.1016/j.cor.2004.07.010. url: http://dx.doi.org/10.1016/j.cor.

2004.07.010.

[20] Kinshuk Govil, Edwin Chan, and Hal Wasserman. “Comparing Algorithm for Dy-

namic Speed-setting of a Low-power CPU”. In: Proceedings of the 1st Annual Inter-

national Conference on Mobile Computing and Networking. MobiCom ’95. Berkeley,

California, USA: ACM, 1995, pp. 13–25. isbn: 0-89791-814-2. doi: 10.1145/215530.

215546. url: http://doi.acm.org/10.1145/215530.215546.

[21] R.L. Graham et al. “Optimization and Approximation in Deterministic Sequenc-

ing and Scheduling: a Survey”. In: Discrete Optimization IIProceedings of the Ad-

vanced Research Institute on Discrete Optimization and Systems Applications of the

Systems Science Panel of NATO and of the Discrete Optimization Symposium co-

sponsored by IBM Canada and SIAM Banff, Aha. and Vancouver. Ed. by E.L. John-

son P.L. Hammer and B.H. Korte. Vol. 5. Annals of Discrete Mathematics. Elsevier,

1979, pp. 287–326. doi: http://dx.doi.org/10.1016/S0167-5060(08)70356-X.

url: http://www.sciencedirect.com/science/article/pii/S016750600870356X.

[22] Chien-Chung Huang and Sebastian Ott. “New Results for Non-Preemptive Speed

Scaling”. In: Mathematical Foundations of Computer Science 2014 - 39th Interna-

tional Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceed-

ings, Part II. 2014, pp. 360–371. doi: 10.1007/978-3-662-44465-8_31. url:

http://dx.doi.org/10.1007/978-3-662-44465-8_31.

http://dx.doi.org/10.1007/978-3-319-18263-6_10
http://dx.doi.org/10.1007/978-3-319-18263-6_10
http://dx.doi.org/10.1007/978-3-319-18263-6_10
http://dl.acm.org/citation.cfm?id=1347082.1347135
http://dl.acm.org/citation.cfm?id=1347082.1347135
http://dx.doi.org/10.1002/nav.20202
http://dx.doi.org/10.1002/nav.20202
http://dx.doi.org/10.1002/nav.20202
http://dx.doi.org/10.1016/j.cor.2004.07.010
http://dx.doi.org/10.1016/j.cor.2004.07.010
http://dx.doi.org/10.1016/j.cor.2004.07.010
http://dx.doi.org/10.1145/215530.215546
http://dx.doi.org/10.1145/215530.215546
http://doi.acm.org/10.1145/215530.215546
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-5060(08)70356-X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://dx.doi.org/10.1007/978-3-662-44465-8_31
http://dx.doi.org/10.1007/978-3-662-44465-8_31

[23] Hark-Chin Hwang, Soo Y. Chang, and Kangbok Lee. “Parallel machine scheduling

under a grade of service provision”. In: Computers & OR 31.12 (2004), pp. 2055–

2061. doi: 10.1016/S0305-0548(03)00164-3. url: http://dx.doi.org/10.

1016/S0305-0548(03)00164-3.

[24] Sandy Irani, Sandeep K. Shukla, and Rajesh K. Gupta. “Algorithms for power sav-

ings”. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, January 12-14, 2003, Baltimore, Maryland, USA. 2003, pp. 37–46. url:

http://dl.acm.org/citation.cfm?id=644108.644115.

[25] J.L.W.V. Jensen. “Sur les fonctions convexes et les inégalités entre les valeurs moyennes”.

French. In: Acta Mathematica 30.1 (1906), pp. 175–193. issn: 0001-5962. doi: 10.

1007/BF02418571. url: http://dx.doi.org/10.1007/BF02418571.

[26] Harold W. Kuhn. “The Hungarian Method for the Assignment Problem”. In: Naval

Research Logistics Quarterly 2.1–2 (Mar. 1955), pp. 83–97. doi: 10.1002/nav.

3800020109.

[27] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. “Approximation Algorithms

for Scheduling Unrelated Parallel Machines”. In: 28th Annual Symposium on Foun-

dations of Computer Science, Los Angeles, California, USA, 27-29 October 1987.

1987, pp. 217–224. doi: 10.1109/SFCS.1987.8. url: http://dx.doi.org/10.

1109/SFCS.1987.8.

[28] Minming Li, Becky Jie Liu, and Frances F. Yao. “Min-Energy Voltage Allocation

for Tree-Structured Tasks”. In: Computing and Combinatorics, 11th Annual Inter-

national Conference, COCOON 2005, Kunming, China, August 16-29, 2005, Pro-

ceedings. 2005, pp. 283–296. doi: 10.1007/11533719_30. url: http://dx.doi.

org/10.1007/11533719_30.

[29] Gabriella Muratore, Ulrich M. Schwarz, and Gerhard J. Woeginger. “Parallel ma-

chine scheduling with nested job assignment restrictions”. In: Oper. Res. Lett. 38.1

(2010), pp. 47–50. doi: 10.1016/j.orl.2009.09.010. url: http://dx.doi.org/

10.1016/j.orl.2009.09.010.

[30] Daniel Dominic Sleator and Robert Endre Tarjan. “Amortized Efficiency of List

Update and Paging Rules”. In: Commun. ACM 28.2 (1985), pp. 202–208. doi: 10.

1145/2786.2793. url: http://doi.acm.org/10.1145/2786.2793.

[31] Statistical Review of World Energy 2015. BP. 2015. url: http://www.bp.com/

statisticalreview.

[32] Éva Tardos. “A strongly polynomial minimum cost circulation algorithm”. In: Com-

binatorica 5.3 (1985), pp. 247–256. doi: 10.1007/BF02579369. url: http://dx.

doi.org/10.1007/BF02579369.

http://dx.doi.org/10.1016/S0305-0548(03)00164-3
http://dx.doi.org/10.1016/S0305-0548(03)00164-3
http://dx.doi.org/10.1016/S0305-0548(03)00164-3
http://dl.acm.org/citation.cfm?id=644108.644115
http://dx.doi.org/10.1007/BF02418571
http://dx.doi.org/10.1007/BF02418571
http://dx.doi.org/10.1007/BF02418571
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1109/SFCS.1987.8
http://dx.doi.org/10.1109/SFCS.1987.8
http://dx.doi.org/10.1109/SFCS.1987.8
http://dx.doi.org/10.1007/11533719_30
http://dx.doi.org/10.1007/11533719_30
http://dx.doi.org/10.1007/11533719_30
http://dx.doi.org/10.1016/j.orl.2009.09.010
http://dx.doi.org/10.1016/j.orl.2009.09.010
http://dx.doi.org/10.1016/j.orl.2009.09.010
http://dx.doi.org/10.1145/2786.2793
http://dx.doi.org/10.1145/2786.2793
http://doi.acm.org/10.1145/2786.2793
http://www.bp.com/statisticalreview
http://www.bp.com/statisticalreview
http://dx.doi.org/10.1007/BF02579369
http://dx.doi.org/10.1007/BF02579369
http://dx.doi.org/10.1007/BF02579369

[33] Mark Weiser et al. “Scheduling for Reduced CPU Energy”. In: Proceedings of the

First USENIX Symposium on Operating Systems Design and Implementation (OSDI),

Monterey, California, USA, November 14-17, 1994. 1994, pp. 13–23. url: http:

//dl.acm.org/citation.cfm?id=1267640.

[34] Adam Wierman, Lachlan L. H. Andrew, and Ao Tang. “Power-aware speed scaling

in processor sharing systems: Optimality and robustness”. In: Perform. Eval. 69.12

(2012), pp. 601–622. doi: 10.1016/j.peva.2012.07.002. url: http://dx.doi.

org/10.1016/j.peva.2012.07.002.

[35] F. Frances Yao, Alan J. Demers, and Scott Shenker. “A Scheduling Model for Re-

duced CPU Energy”. In: 36th Annual Symposium on Foundations of Computer Sci-

ence, Milwaukee, Wisconsin, 23-25 October 1995. 1995, pp. 374–382. doi: 10.1109/

SFCS.1995.492493. url: http://dx.doi.org/10.1109/SFCS.1995.492493.

http://dl.acm.org/citation.cfm?id=1267640
http://dl.acm.org/citation.cfm?id=1267640
http://dx.doi.org/10.1016/j.peva.2012.07.002
http://dx.doi.org/10.1016/j.peva.2012.07.002
http://dx.doi.org/10.1016/j.peva.2012.07.002
http://dx.doi.org/10.1109/SFCS.1995.492493
http://dx.doi.org/10.1109/SFCS.1995.492493
http://dx.doi.org/10.1109/SFCS.1995.492493

	Introduction
	Notation and preliminaries
	Goal and overview
	Basic notions and further notes
	Special instances
	Agreeable deadlines
	Laminar instance
	Purely laminar instance

	Previous work
	Single processor
	Multi-processor

	Analysis and improvements
	Jobs of equal work volume
	The dynamic program
	Improving the time complexity
	The improved DP

	A constant number of jobs have unrestricted volumes
	Extended grid intervals set I'
	The solution

	Other improvements and unsuccessful directions
	Single processor
	Multi-processor

	A different scheduling problem
	The problem
	Further notation

	The solution
	Correctness of algorithm A
	Correctness of A's step 2.(c)
	Correctness of A's step 2.(d)

	Complexity
	Proof of theorem 5

	Generalizing to nested machine sets
	Preliminaries
	The solution
	Correctness of algorithm A'
	Correctness of A''s step 3.(c)
	Correctness of A''s step 3.(d)

	Proof of theorem 5'

	Conclusion
	Bibliography

